Skip to main content
Log in

Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The human probiotic Propionibacterium freudenreichii kills colorectal adenocarcinoma cells through apoptosis in vitro via its metabolites, the short chain fatty acids (SCFA), acetate and propionate. However, the precise mechanisms, the kinetics of cellular events and the impact of environmental factors such as pH remained to be specified. For the first time, this study demonstrates a major impact of a shift in extracellular pH on the mode of propionibacterial SCFA-induced cell death of HT-29 cells, in the pH range 5.5 to 7.5 prevailing within the colon. Propionibacterial SCFA triggered apoptosis in the pH range 6.0 to 7.5, a lethal process lasting more than 96 h. Indeed at pH 7.5, SCFA induced cell cycle arrest in the G2/M phase, followed by a sequence of cellular events characteristic of apoptosis. By contrast, at pH 5.5, the same SCFA triggered a more rapid and drastic lethal process in less than 24 h. This was characterised by sudden mitochondrial depolarisation, inner membrane permeabilisation, drastic depletion in ATP levels and ROS accumulation, suggesting death by necrosis. Thus, in digestive cancer prophylaxis, the observed pH-mediated switch between apoptosis and necrosis has to be taken into account in strategies involving SCFA production by propionibacteria to kill colon cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AV:

annexinV-FITC

ΔΨm:

mitochondrial transmembrane potential

DHE:

dihydroethidium

DiOC6(3):

dihexyloxacarbocyanine iodide

Eth:

Ethidium

Etop.:

etoposide

FDA:

fluorescein diacetate

IM:

inner membrane

LND:

lonidamine

O2 .− :

superoxide anion

Men:

Menadione

PARP:

poly-ADP-ribose polymerase

PCD:

programmed cell death

PI:

propidium iodide

PTPC:

permeability transition pore complex

RIP:

receptor-interacting protein

ROS:

reactive oxygen species

SCFA:

short-chain fatty acid

TNF:

tumor necrosis factor

TRAIL:

TNF α related apoptosis inducing ligand

References

  1. Willett WC (2000) Diet and cancer. Oncologist 5:393–404

    Article  PubMed  CAS  Google Scholar 

  2. Bingham S (2006) The fibre-folate debate in colo-rectal cancer. Proc Nutr Soc 65:19–23

    Article  PubMed  CAS  Google Scholar 

  3. Scheppach W, Bartram HP, Richter F (1995) Role of short-chain fatty acids in the prevention of colorectal cancer. Eur J Cancer 31A:1077–1080

    Article  PubMed  CAS  Google Scholar 

  4. Heerdt BG, Houston MA, Augenlicht LH (1997) Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ 8:523–532

    PubMed  CAS  Google Scholar 

  5. Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268:462–464

    Article  PubMed  CAS  Google Scholar 

  6. Nakano K, Mizuno T, Sowa Y et al (1997) Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J Biol Chem 272:22199–22206

    Article  PubMed  CAS  Google Scholar 

  7. Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proc Nutr Soc 62:107–115

    Article  PubMed  CAS  Google Scholar 

  8. Jan G, Belzacq AS, Haouzi D et al (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188

    Article  PubMed  CAS  Google Scholar 

  9. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72

    Article  PubMed  CAS  Google Scholar 

  10. Jan G, Leverrier P, Roland N (2002) Survival and beneficial effects of propionibacteria in the human gut: in vivo and in vitro investigations. Lait 82:131–144

    Article  CAS  Google Scholar 

  11. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  PubMed  CAS  Google Scholar 

  12. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  13. Brenner C, Kroemer G (2000) Apoptosis. Mitochondria–the death signal integrators. Science 289:1150–1151

    Article  PubMed  CAS  Google Scholar 

  14. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  15. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603

    Article  PubMed  CAS  Google Scholar 

  16. Leist M, Jaattela M (2001) Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  17. Jaattela M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23:2746–2756

    Article  PubMed  CAS  Google Scholar 

  18. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162

    Article  PubMed  Google Scholar 

  19. Meurette O, Huc L, Rebillard A, Le Moigne G, Lagadic-Gossmann D, Dimanche-Boitrel MT (2005) TRAIL (TNF-Related Apoptosis-Inducing Ligand) Induces Necrosis-Like Cell Death in Tumor Cells at Acidic Extracellular pH. Ann N.Y. Acad. Sci. 1056:379–387

    Article  CAS  Google Scholar 

  20. Fallingborg J, Christensen LA, Ingeman-Nielsen M, Jacobsen BA, Abildgaard K, Rasmussen HH (1989) pH-profile and regional transit times of the normal gut measured by a radiotelemetry device. Aliment Pharmacol Ther 3:605–613

    Article  PubMed  CAS  Google Scholar 

  21. Nugent SG, Kumar D, Rampton DS, Evans DF (2001) Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48:571–577

    Article  PubMed  CAS  Google Scholar 

  22. Wike-Hooley JL, Van Den Berg AP, Van Der ZJ, Reinhold HS (1985) Human tumour pH and its variation. Eur J Cancer Clin Oncol 21:785–791

    Article  PubMed  CAS  Google Scholar 

  23. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    Article  PubMed  CAS  Google Scholar 

  24. Meurette O, Lefeuvre-Orfila L, Rebillard A, Lagadic-Gossmann D, Dimanche-Boitrel MT (2005) Role of intracellular glutathione in cell sensitivity to the apoptosis induced by tumor necrosis factor {alpha}-related apoptosis-inducing ligand/anticancer drug combinations. Clin Cancer Res. 11:3075–3083

    Article  PubMed  CAS  Google Scholar 

  25. Poncet D, Boya P, Metivier D, Zamzami N, Kroemer G (2003) Cytofluorometric quantitation of apoptosis-driven inner mitochondrial membrane permeabilization. Apoptosis 8:521–530

    Article  PubMed  CAS  Google Scholar 

  26. Ravagnan L, Marzo I, Costantini P et al (1999) Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 18:2537–2546

    Article  PubMed  CAS  Google Scholar 

  27. Belzacq AS, Jacotot E, Vieira HL et al (2001) Apoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target. Cancer Res 61:1260–1264

    PubMed  CAS  Google Scholar 

  28. Lemaire C, Andrau K, Fraisse CS, Adam A, Souvannavong V (1999) IL-4 inhibits apoptosis and prevents mitochondrial damage without inducing the switch to necrosis observed with caspase inhibitors. Cell Death Differ 6:813–820

    Article  PubMed  CAS  Google Scholar 

  29. Lorenzo HK, Susin SA, Kroemer G (2001) Cytofluorimetric quantification of nuclear apoptosis induced in a Cell-Free System. In: Reed JC (ed) Methods in enzymology, vol. 322 Apoptosis, San Diego: Academic press, pp 198–201

    Google Scholar 

  30. Harguindey S, Orive G, Luis PJ, Paradiso A, Reshkin SJ (2005) The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin–one single nature. Biochim Biophys Acta 1756:1–24

    PubMed  CAS  Google Scholar 

  31. Sharma M, Sahu K, Dube A, Gupta PK (2005) Extracellular pH influences the mode of cell death in human colon adenocarcinoma cells subjected to photodynamic treatment with chlorin p6. J Photochem Photobiol B 81:107–113

    Article  PubMed  CAS  Google Scholar 

  32. Bernhard D, Ausserlechner MJ, Tonko M et al (1999) Apoptosis induced by the histone deacetylase inhibitor sodium butyrate in human leukemic lymphoblasts. FASEB J. 13:1991–2001

    PubMed  CAS  Google Scholar 

  33. Siavoshian S, Blottiere HM, Cherbut C, Galmiche JP (1997) Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem Biophys Res Commun 232:169–172

    Article  PubMed  CAS  Google Scholar 

  34. Lemasters JJ (1998) The mitochondrial permeability transition: From biochemical curiosity to pathophysiological mechanism. Gastroenterology 115:783–786

    Article  PubMed  CAS  Google Scholar 

  35. Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16

    Article  PubMed  CAS  Google Scholar 

  36. Marzo I, Brenner C, Zamzami N et al (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187:1261–1271

    Article  PubMed  CAS  Google Scholar 

  37. Halestrap A (2005) Biochemistry: A pore way to die. Nature 434:578–579

    Article  PubMed  CAS  Google Scholar 

  38. Lebras M, Clement MV, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219

    CAS  Google Scholar 

  39. Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc.) 70:231–239

    Article  CAS  Google Scholar 

  40. Richter C, Schweizer M, Cossarizza A, Franceschi C (1996) Control of apoptosis by the cellular ATP level. FEBS Letters 378:107–110

    Article  PubMed  CAS  Google Scholar 

  41. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  42. Nicotera P, Leist M, Ferrando-May E (1999) Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp 66:69–73

    PubMed  CAS  Google Scholar 

  43. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  44. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  PubMed  CAS  Google Scholar 

  45. Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, Aller P (2003) The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ 10:889–898

    Article  PubMed  CAS  Google Scholar 

  46. Barros LF, Hermosilla T, Castro J (2001) Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 130:401–409

    Article  PubMed  CAS  Google Scholar 

  47. Charney AN, Micic L, Egnor RW (1998) Nonionic diffusion of short-chain fatty acids across rat colon. Am J Physiol 274:G518–G524

    PubMed  CAS  Google Scholar 

  48. Reynolds DA, Rajendran VM, Binder HJ (1993) Bicarbonate-stimulated [14C]butyrate uptake in basolateral membrane vesicles of rat distal colon. Gastroenterology 105:725–732

    PubMed  CAS  Google Scholar 

  49. von Engelhardt W, Burmester M, Hansen K, Becker G, Rechkemmer G (1993) Effects of amiloride and ouabain on short-chain fatty acid transport in guinea-pig large intestine. J Physiol 460:455–466

    PubMed  CAS  Google Scholar 

  50. Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961

    Article  PubMed  CAS  Google Scholar 

  51. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96:13978–13982

    Article  PubMed  CAS  Google Scholar 

  52. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  53. Lemaire C, Andreau K, Souvannavong V, Adam A (1998) Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Letters 425:266–270

    Article  PubMed  CAS  Google Scholar 

  54. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  PubMed  CAS  Google Scholar 

  55. Brooks C, Ketsawatsomkron P, Sui Y et al (2005) Acidic pH inhibits ATP depletion-induced tubular cell apoptosis by blocking caspase-9 activation in apoptosome. Am J Physiol Renal Physiol 289:F410–F419

    Article  PubMed  CAS  Google Scholar 

  56. Khaled AR, Kim K, Hofmeister R, Muegge K, Durum SK (1999) Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci USA 96:14476–14481

    Article  PubMed  CAS  Google Scholar 

  57. Shah GM, Shah RG, Poirier GG (1996) Different cleavage pattern for poly(ADP-ribose) polymerase during necrosis and apoptosis in HL-60 cells. Biochem Biophys Res Commun 229:838–844

    Article  PubMed  CAS  Google Scholar 

  58. Chan FK, Shisler J, Bixby JG et al (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621

    Article  PubMed  CAS  Google Scholar 

  59. Holler N, Zaru R, Micheau O et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  PubMed  CAS  Google Scholar 

  60. Martinon F, Holler N, Richard C, Tschopp J (2000) Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Letters 468:134–136

    Article  PubMed  CAS  Google Scholar 

  61. Xu Y, Huang S, Liu ZG, Han J (2006) Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281:8788–8795

    Article  PubMed  CAS  Google Scholar 

  62. Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26:2215–2225

    Article  PubMed  CAS  Google Scholar 

  63. Patnaik A, Rowinsky EK, Villalona MA et al (2002) A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin Cancer Res 8:2142–2148

    PubMed  CAS  Google Scholar 

  64. Serpe L, Catalano MG, Cavalli R et al (2004) Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm 58:673–680

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish thank Dr. O. Meurette and Dr. L. Huc for their helpful advice on cytometric analysis, and C. Longin for technical assistance in TEM assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwénaël Jan.

Additional information

This work has been supported by a grant from CRITT santé Bretagne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, A., Lagadic-Gossmann, D., Lemaire, C. et al. Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis 12, 573–591 (2007). https://doi.org/10.1007/s10495-006-0010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0010-3

Keywords

Navigation