Skip to main content

Chemical Approaches to Prepare Antimicrobial Polymers

  • Chapter
  • First Online:
Polymers against Microorganisms

Abstract

Until the early 1980s, low-molecular weight substances were mainly employed for their antimicrobial activity. However, the discovery of antimicrobial peptides (AMPs) carried out by dramatically changed this situation. This group demonstrated that macromolecular peptides were able to kill Gram-positive bacteria, Gram-negative bacteria, and fungi. AMPs have been extensively developed and today an Antimicrobial Peptide Database (APD). Based on this finding and around the same time antimicrobial polymers known under the name “polymer disinfectants” started to be investigated. As a result, studies on syntheses of polymeric biocides have been started to develop a new utilization field of polymer materials from 1980s. In particular, synthetic polymers have been widely investigated as a new molecular platform to create antimicrobial agents that are active against drug-resistant bacteria.

As will be depicted throughout this chapter, a variety of synthetic polymers with different chemical structures have been utilized to prepare antimicrobial polymers, and some polymers with high efficacy have been reported. In addition, a thorough analysis of the chemical characteristics of antimicrobial polymers and the different strategies to prepare them will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steiner H, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246–8.

    Article  Google Scholar 

  2. Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;32 suppl 1:D590–2.

    Article  Google Scholar 

  3. Palermo EF, Kuroda K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol. 2010;87(5):1605–15.

    Article  Google Scholar 

  4. Engler AC, et al. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7(3):201–22.

    Article  Google Scholar 

  5. Kuroda K, Caputo GA. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):49–66.

    Article  Google Scholar 

  6. Li P, et al. Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv. 2012;2(10):4031–44.

    Article  Google Scholar 

  7. Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(2):281–339.

    Article  Google Scholar 

  8. Thoma LM, Boles BR, Kuroda K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules. 2014;15(8):2933–43.

    Article  Google Scholar 

  9. King A, et al. High antimicrobial effectiveness with low hemolytic and cytotoxic activity for PEG/quaternary copolyoxetanes. Biomacromolecules. 2014;15(2):456–67.

    Article  Google Scholar 

  10. Liu R, et al. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J Am Chem Soc. 2014;136(11):4410–8.

    Article  Google Scholar 

  11. Liu R, et al. Structure–activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans. J Am Chem Soc. 2014;136(11):4333–42.

    Article  Google Scholar 

  12. Stratton TR, Applegate BM, Youngblood JP. Effect of steric hindrance on the properties of antibacterial and biocompatible copolymers. Biomacromolecules. 2011;12(1):50–6.

    Article  Google Scholar 

  13. Thaker HD, et al. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with gram-negative activity. ACS Med Chem Lett. 2013;4(5):481–5.

    Article  Google Scholar 

  14. Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta Biomembr. 2009;1788(8):1687–92.

    Article  Google Scholar 

  15. Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8(5):1359–84.

    Article  Google Scholar 

  16. Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011;89(3):475–92.

    Article  Google Scholar 

  17. Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4(1):46–71.

    Article  Google Scholar 

  18. Tiller JC, et al. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98(11):5981–5.

    Article  Google Scholar 

  19. Tiller JC, et al. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465–71.

    Article  Google Scholar 

  20. Park ES, et al. Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrene-random-4-vinyl pyridine). Eur Polym J. 2004;40(12):2819–22.

    Article  Google Scholar 

  21. Li G, Shen J. A study of pyridinium‐type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium‐type polymers. J Appl Polym Sci. 2000;78(3):676–84.

    Article  Google Scholar 

  22. Anderson EB, Long TE. Imidazole-and imidazolium-containing polymers for biology and material science applications. Polymer. 2010;51(12):2447–54.

    Article  Google Scholar 

  23. Soykan C, Coşkun R, Delibaş A. Microbial screening of copolymers of N‐vinylimidazole with phenacyl methacrylate: synthesis and monomer reactivity ratios. J Macromol Sci A. 2005;42(12):1603–19.

    Article  Google Scholar 

  24. Gottenbos B, et al. Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother. 2001;48(1):7–13.

    Article  Google Scholar 

  25. Gottenbos B, et al. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials. 2003;24(16):2707–10.

    Article  Google Scholar 

  26. Li G, Shen J, Zhu Y. A study of pyridinium‐type functional polymers. III. Preparation and characterization of insoluble pyridinium‐type polymers. J Appl Polym Sci. 2000;78(3):668–75.

    Article  Google Scholar 

  27. Lu L, et al. Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir. 2005;21(22):10154–9.

    Article  Google Scholar 

  28. Chemburu S, et al. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir. 2008;24(19):11053–62.

    Article  Google Scholar 

  29. Corbitt TS, et al. Conjugated polyelectrolyte capsules: light-activated antimicrobial micro “Roach Motels”. ACS Appl Mater Interfaces. 2008;1(1):48–52.

    Article  Google Scholar 

  30. Wang Y, et al. Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes. Langmuir. 2010;26(15):12509–14.

    Article  Google Scholar 

  31. Corbitt TS, et al. Light and dark biocidal activity of cationic poly (arylene ethynylene) conjugated polyelectrolytes. Photochem Photobiol Sci. 2009;8(7):998–1005.

    Article  Google Scholar 

  32. Xing C, et al. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc. 2009;131(36):13117–24.

    Article  Google Scholar 

  33. Sauvet G, et al. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci A Polym Chem. 2003;41(19):2939–48.

    Article  Google Scholar 

  34. Mizerska U, et al. Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties. Eur Polym J. 2009;45(3):779–87.

    Article  Google Scholar 

  35. Gao B, Zhang X, Zhu Y. Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. J Biomater Sci Polym Ed. 2007;18(5):531–44.

    Article  Google Scholar 

  36. Pasquier N, et al. Amphiphilic branched polymers as antimicrobial agents. Macromol Biosci. 2008;8(10):903–15.

    Article  Google Scholar 

  37. Pasquier N, et al. From multifunctionalized poly (ethylene imine)s toward antimicrobial coatings. Biomacromolecules. 2007;8(9):2874–82.

    Article  Google Scholar 

  38. Abid C, et al. Synthesis and characterization of quaternary ammonium PEGDA dendritic copolymer networks for water disinfection. J Appl Polym Sci. 2010;116(3):1640–9.

    Google Scholar 

  39. Chen CZ, et al. Quaternary ammonium functionalized poly (propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules. 2000;1(3):473–80.

    Article  Google Scholar 

  40. Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359–68.

    Article  Google Scholar 

  41. Ortega P, et al. Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Org Biomol Chem. 2008;6(18):3264–9.

    Article  Google Scholar 

  42. Hoogenboom R. Poly (2‐oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed Engl. 2009;48(43):7978–94.

    Article  Google Scholar 

  43. Makino A, Kobayashi S. Chemistry of 2‐oxazolines: a crossing of cationic ring‐opening polymerization and enzymatic ring‐opening polyaddition. J Polym Sci A Polym Chem. 2010;48(6):1251–70.

    Article  Google Scholar 

  44. Adams N, Schubert US. Poly (2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59(15):1504–20.

    Article  Google Scholar 

  45. Waschinski CJ, Tiller JC. Poly (oxazoline)s with telechelic antimicrobial functions. Biomacromolecules. 2005;6(1):235–43.

    Article  Google Scholar 

  46. Waschinski CJ, et al. Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci. 2005;5(2):149–56.

    Article  Google Scholar 

  47. Waschinski CJ, et al. Insights in the antibacterial action of poly (methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules. 2008;9(7):1764–71.

    Article  Google Scholar 

  48. Ikeda T, Yamaguchi H, Tazuke S. New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrob Agents Chemother. 1984;26(2):139–44.

    Article  Google Scholar 

  49. Ikeda T, Tazuke S, Suzuki Y. Biologically active polycations. 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol Chem. 1984;185(5):869–76.

    Article  Google Scholar 

  50. Gelman MA, et al. Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett. 2004;6(4):557–60.

    Article  Google Scholar 

  51. Vigliotta G, et al. Modulating antimicrobial activity by synthesis: dendritic copolymers based on nonquaternized 2-(dimethylamino)ethyl methacrylate by Cu-mediated ATRP. Biomacromolecules. 2012;13(3):833–41.

    Article  Google Scholar 

  52. Ornelas-Megiatto C, Wich PR, Fréchet JMJ. Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers. J Am Chem Soc. 2012;134(4):1902–5.

    Article  Google Scholar 

  53. Hemp ST, et al. Phosphonium-containing diblock copolymers for enhanced colloidal stability and efficient nucleic acid delivery. Biomacromolecules. 2012;13(8):2439–45.

    Article  Google Scholar 

  54. Popa A, et al. Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. React Funct Polym. 2003;55(2):151–8.

    Article  Google Scholar 

  55. Li C, et al. Preparation and antimicrobial activity of quaternary phosphonium modified epoxidized natural rubber. Mater Lett. 2013;93:145–8.

    Article  Google Scholar 

  56. Xue Y, et al. Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv. 2014;4(87):46887–95.

    Article  Google Scholar 

  57. Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides. Ind Eng Chem Res. 2004;43(17):5015–20.

    Article  Google Scholar 

  58. Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14(3):585–601.

    Article  Google Scholar 

  59. Sun Y, et al. Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J Polym Sci A Polym Chem. 2001;39(18):3073–84.

    Article  Google Scholar 

  60. Chen Z, Sun Y. N-halamine-based antimicrobial additives for polymers: preparation, characterization and antimicrobial activity. Ind Eng Chem Res. 2006;45(8):2634–40.

    Article  Google Scholar 

  61. Guittard F, Geribaldi S. Highly fluorinated molecular organised systems: strategy and concept. J Fluor Chem. 2001;107(2):363–74.

    Article  Google Scholar 

  62. Massi L, et al. Antimicrobial properties of highly fluorinated bis-ammonium salts. Int J Antimicrob Agents. 2003;21(1):20–6.

    Article  Google Scholar 

  63. Caillier L, et al. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J Colloid Interface Sci. 2009;332(1):201–7.

    Article  Google Scholar 

  64. Thebault P, et al. Surface and antimicrobial properties of semi-fluorinated quaternary ammonium thiol surfactants potentially usable for self-assembled monolayers. J Fluor Chem. 2010;131(5):592–6.

    Article  Google Scholar 

  65. Kugel AJ, et al. Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J Coat Technol Res. 2009;6(1):107–21.

    Article  Google Scholar 

  66. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  Google Scholar 

  67. Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech. 2006;24(12):1551–7.

    Article  Google Scholar 

  68. Tew GN, et al. De novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci U S A. 2002;99(8):5110–4.

    Article  Google Scholar 

  69. Findlay B, Zhanel GG, Schweizer F. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother. 2010;54(10):4049–58.

    Article  Google Scholar 

  70. Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Pept Sci. 2000;55(1):4–30.

    Article  Google Scholar 

  71. O’Neil KT, DeGrado WF. How calmodulin binds its targets: sequence independent recognition of amphiphilic α-helices. Trends Biochem Sci. 1990;15(2):59–64.

    Article  Google Scholar 

  72. Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Pept Sci. 1998;47(6):451–63.

    Article  Google Scholar 

  73. Chen Y, et al. Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem. 2005;280(13):12316–29.

    Article  Google Scholar 

  74. Jiang Z, et al. Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides. Chem Biol Drug Des. 2008;72(6):483–95.

    Article  Google Scholar 

  75. Jiang Z, et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept Sci. 2008;90(3):369–83.

    Article  Google Scholar 

  76. Martinek TA, Fülöp F. Side-chain control of β-peptide secondary structures. Eur J Biochem. 2003;270(18):3657–66.

    Article  Google Scholar 

  77. Wiradharma N, et al. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials. 2011;32(8):2204–12.

    Article  Google Scholar 

  78. Blondelle SE, Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry. 1992;31(50):12688–94.

    Article  Google Scholar 

  79. Zelezetsky I, et al. Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J. 2005;390(Pt 1):177–88.

    Article  Google Scholar 

  80. Won A, et al. Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys Chem B. 2011;115(10):2371–9.

    Article  Google Scholar 

  81. Gabriel GJ, Tew GN. Conformationally rigid proteomimetics: a case study in designing antimicrobial aryl oligomers. Org Biomol Chem. 2008;6(3):417–23.

    Article  Google Scholar 

  82. Tew GN, et al. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res. 2009;43(1):30–9.

    Article  Google Scholar 

  83. Liu D, et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Ed Engl. 2004;43(9):1158–62.

    Article  Google Scholar 

  84. Ilker MF, et al. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–5.

    Article  Google Scholar 

  85. Jain A, et al. Antimicrobial polymers. Adv Healthc Mater. 2014;3(12):1969–85.

    Article  Google Scholar 

  86. Hirayama M. The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship. Biocontrol Sci. 2011;16(1):23–31.

    Article  Google Scholar 

  87. Ward M, et al. Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria. J Appl Polym Sci. 2006;101(2):1036–41.

    Article  Google Scholar 

  88. Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed Engl. 2014;53(7):1746–54.

    Article  Google Scholar 

  89. Lowe A, et al. Acrylonitrile-based nitric oxide releasing melt-spun fibers for enhanced wound healing. Macromolecules. 2012;45(15):5894–900.

    Article  Google Scholar 

  90. Marambio-Jones C, Hoek EV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51.

    Article  Google Scholar 

  91. Hetrick EM, et al. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano. 2008;2(2):235–46.

    Article  Google Scholar 

  92. Zhang Y, Jiang J, Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer. 1999;40(22):6189–98.

    Article  Google Scholar 

  93. Feiertag P, et al. Structural characterization of biocidal oligoguanidines. Macromol Rapid Commun. 2003;24(9):567–70.

    Article  Google Scholar 

  94. Albert M, et al. Structure–activity relationships of oligoguanidines influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules. 2003;4(6):1811–7.

    Article  Google Scholar 

  95. Wang Y, et al. Antimicrobial and hemolytic activities of copolymers with cationic and hydrophobic groups: a comparison of block and random copolymers. Macromol Biosci. 2011;11(11):1499–504.

    Google Scholar 

  96. Locock KES, et al. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules. 2013;14(11):4021–31.

    Article  Google Scholar 

  97. Zhou C, et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromolecules. 2010;11(1):60–7.

    Article  Google Scholar 

  98. Song A, et al. Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem Biol. 2011;6(6):590–9.

    Article  Google Scholar 

  99. Cheng C-Y, et al. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromolecules. 2012;13(9):2624–33.

    Article  Google Scholar 

  100. Kuroda K, Caputo GA, DeGrado WF. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry. 2009;15(5):1123–33. doi:10.1002/chem.200801523.

    Article  Google Scholar 

  101. Palermo EF, Sovadinova I, Kuroda K. Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules. 2009;10(11):3098–107.

    Article  Google Scholar 

  102. Kuroda K, DeGrado WF. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc. 2005;127(12):4128–9.

    Article  Google Scholar 

  103. Mowery BP, et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc. 2007;129(50):15474–6.

    Article  Google Scholar 

  104. Lienkamp K, et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J Am Chem Soc. 2008;130(30):9836–43.

    Article  Google Scholar 

  105. Eren T, et al. Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromol Chem Phys. 2008;209(5):516–24.

    Article  Google Scholar 

  106. Sambhy V, Peterson BR, Sen A. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed Engl. 2008;47(7):1250–4.

    Article  Google Scholar 

  107. Gabriel GJ, et al. Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers. Chemistry. 2009;15(2):433–9.

    Article  Google Scholar 

  108. Ganewatta MS, Tang C. Controlling macromolecular structures towards effective antimicrobial polymers. Polymer. 2015;63:A1–29.

    Article  Google Scholar 

  109. Jiang Y, et al. Acid-activated antimicrobial random copolymers: a mechanism-guided design of antimicrobial peptide mimics. Macromolecules. 2013;46(10):3959–64.

    Article  Google Scholar 

  110. Yang X, et al. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes. Biomacromolecules. 2014;15(9):3267–77.

    Article  Google Scholar 

  111. Oda Y, et al. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules. 2011;12(10):3581–91.

    Article  Google Scholar 

  112. Ortega P, et al. Hyperbranched polymers versus dendrimers containing a carbosilane framework and terminal ammonium groups as antimicrobial agents. Org Biomol Chem. 2011;9(14):5238–48.

    Article  Google Scholar 

  113. Young AW, et al. Structure and antimicrobial properties of multivalent short peptides. MedChemComm. 2011;2(4):308–14.

    Article  Google Scholar 

  114. Liu Z, et al. Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem. 2007;8(17):2063–5.

    Article  Google Scholar 

  115. Hou SY, et al. Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg Med Chem Lett. 2009;19(18):5478–81.

    Article  Google Scholar 

  116. Wiradharma N, Liu S-Q, Yang Y-Y. Branched and 4-arm starlike α-helical peptide structures with enhanced antimicrobial potency and selectivity. Small. 2012;8(3):362–6.

    Article  Google Scholar 

  117. Tulu M, et al. Synthesis, characterization and antimicrobial activity of water soluble dendritic macromolecules. Eur J Med Chem. 2009;44(3):1093–9.

    Article  Google Scholar 

  118. Calabretta MK, et al. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules. 2007;8(6):1807–11.

    Article  Google Scholar 

  119. Wang B, et al. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm. 2010;395(1–2):298–308.

    Article  Google Scholar 

  120. Nonaka T, et al. Synthesis of water-soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides–N-isopropylacrylamide copolymers and their functions. J Appl Polym Sci. 2003;87(3):386–93.

    Article  Google Scholar 

  121. Palermo EF, Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules. 2009;10(6):1416–28.

    Article  Google Scholar 

  122. Al-Badri ZM, et al. Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules. 2008;9(10):2805–10.

    Article  Google Scholar 

  123. Chen Y, et al. Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv. 2012;2(27):10275–82.

    Article  Google Scholar 

  124. Wang J, et al. Robust antimicrobial compounds and polymers derived from natural resin acids. Chem Commun. 2012;48(6):916–8.

    Article  Google Scholar 

  125. Colak S, et al. Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules. 2009;10(2):353–9.

    Article  Google Scholar 

  126. Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. II. Effects of counter anion and molecular weight on antibacterial activity of polymeric phosphonium salts. J Polym Sci A Polym Chem. 1993;31(6):1441–7.

    Article  Google Scholar 

  127. Bruenke J, et al. Quantitative comparison of the antimicrobial efficiency of leaching versus nonleaching polymer materials. Macromol Biosci. 2016;16(5):647–54.

    Article  Google Scholar 

  128. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–9.

    Article  Google Scholar 

  129. CLSI. Performance standards for antimicrobial disk susceptibility tests. Approved Standard. 7th ed. CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  130. CLSI. Method for antifungal disk diffusion susceptibility testing of yeasts. Approved Guideline. CLSI document M44-A. Wayne, PA: CLSI; 2004.

    Google Scholar 

  131. Magaldi S, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8(1):39–45.

    Article  Google Scholar 

  132. Valgas C, et al. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38(2):369–80.

    Article  Google Scholar 

  133. Jiménez-Esquilín A, Roane T. Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere. J Ind Microbiol Biotechnol. 2005;32(8):378–81.

    Article  Google Scholar 

  134. Elleuch L, et al. Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl Biochem Biotechnol. 2010;162(2):579–93.

    Article  Google Scholar 

  135. Lertcanawanichakul M, Sawangnop S. A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak J Sci Technol. 2011;5(2):161–71.

    Google Scholar 

  136. Ali‐Shtayeh M, Abu Ghdeib SI. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1999;42(11–12):665–72.

    Article  Google Scholar 

  137. Mukherjee PK, Raghu K. Effect of temperature on antagonistic and biocontrol potential of shape Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 1997;139(3):151–5.

    Article  Google Scholar 

  138. Kumar SN, et al. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode. Ann Microbiol. 2014;64(1):209–18.

    Article  Google Scholar 

  139. Dewanjee S, et al. Bioautography and its scope in the field of natural product chemistry. J Pharm Anal. 2015;5(2):75–84.

    Article  Google Scholar 

  140. Marston A. Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr A. 2011;1218(19):2676–83.

    Article  Google Scholar 

  141. Choma IM, Grzelak EM. Bioautography detection in thin-layer chromatography. J Chromatogr A. 2011;1218(19):2684–91.

    Article  Google Scholar 

  142. Grzelak EM, Majer-Dziedzic B, Choma IM. Development of a novel direct bioautography–thin-layer chromatography test: optimization of growth conditions for Gram-negative bacteria, Escherichia coli. J AOAC Int. 2011;94(5):1567–72.

    Article  Google Scholar 

  143. Silva MT, et al. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination. Mem Inst Oswaldo Cruz. 2005;100(7):779–82.

    Article  Google Scholar 

  144. Runyoro DK, et al. Screening of Tanzanian medicinal plants for anti-Candida activity. BMC Complement Altern Med. 2006;6(1):1.

    Article  Google Scholar 

  145. Pfaller M, Sheehan D, Rex J. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17(2):268–80.

    Article  Google Scholar 

  146. CLSI. Methods for determining bactericidal activity of antimicrobial agents. Approved Guideline. CLSI document M26-A. Wayne, PA: Clinical and Laboratory Standards Institute; 1998.

    Google Scholar 

  147. Konaté K, et al. Antibacterial activity against β-lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann Clin Microbiol Antimicrob. 2012;11(1):1.

    Article  Google Scholar 

  148. CLSI. Method for antifungal disk diffusion susceptibility testing of nondermatophyte filamentous fungi. Approved Guideline. CLSI document M51-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.

    Google Scholar 

  149. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard, 9th ed. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  150. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard, 2nd ed. NCCLS document M27-A2. Wayne, PA: CLSI; 2002.

    Google Scholar 

  151. CLSI. Reference method for broth dilution antifungal susceptibility testing filamentous fungi. Approved Standard, 2nd ed. CLSI document M38-A2. Wayne, PA: CLSI; 2008.

    Google Scholar 

  152. J.I.S. Z 2801:2010. Antimicrobial products-test for antimicrobial activity and efficacy. www.jsa.or.jp

  153. ASTM E2180–07. Standard test method for determining the activity of incorporated antimicrobial agent(s) in polymeric or hydrophobic materials. 2012. www.astm.org

  154. Bechert T, Steinrucke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nat Med. 2000;6(9):1053–6.

    Article  Google Scholar 

  155. Yacoby I, Benhar I. Targeted anti bacterial therapy. Infect Disord Drug Targets. 2007;7(3):221–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez-Hernández, J. (2017). Chemical Approaches to Prepare Antimicrobial Polymers. In: Polymers against Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-47961-3_3

Download citation

Publish with us

Policies and ethics