Skip to main content

Abstract

One of the important goals of surgical procedures involving the visual pathways (retina, optic nerve (ON), optic chiasm, optic tracts, lateral geniculate nucleus in the thalamus, optic radiation, and occipital visual cortex) is the preservation of visual function and in cases of visual impairment, where possible, its improvement (Banoub et al., Anesthesiology 99:716, 2003; Luo et al., PLoS One 10:e0120525, 2015; Houlden et al., J Clin Monit Comput 28:275–285, 2014; Duffau, Acta Neurochir 153:1929–1930, 2011). With these goals in mind, efforts to evaluate and enhance the usefulness of intraoperative monitoring (IOM) of the visual pathways that began in the early 1970s have continued. Since Wright et al. (Trans Ophthalmol Soc U K 93:311–314, 1973) published their report of continuous intraoperative monitoring of visual pathways, utilizing brief flashes of strobe light to evoke electroretinographic (F-ERGs) and visual-evoked potentials (F-VEPs), during orbital surgery, a number of other researchers have strived to evaluate ways in which to monitor the visual pathways in intraoperative settings (Handel, Ann Plast Surg 2:257–258, 1979; Allen et al., Clin Neurosurg 28:457–481, 1981; Grundy, Anesthesiology 58:72–87, 1983; Albright and Sclabassi, J Neurosurg 63:138–140, 1985; Costa e Silva et al., Neurol Res 7:11–16, 1985; Burrows et al., Anesthesiology 73:632–636, 1990; Sloan, Int Anesthesiol Clin 34:109–136,1996; Duffau et al., Acta Neurochir (Wien) 146:265–269, 2004; Benedičič and Bošnjak, Doc Ophthalmol Adv Ophthalmol 122:115–125, 2011;Benedičič and Bošnjak, Acta Neurochir (Wien) 153:1919–1927, 2011; Landi et al., Clin Neurol Neurosurg 113:119–122; 2011; San-Juan et al., Clin Neurol Neurosurg 113:680–682, 2011; Chung et al., Acta Neurochir (Wien) 154:1505–1510, 2012; Ogawa et al., Acta Neurochir (Wien) 155:1879–1886, 2013; Kamio et al., Neurol Med Chir (Tokyo) 54:606–611, 2014; Padalino et al., Surg Neurol Int 4:40, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99:716.

    Article  PubMed  Google Scholar 

  2. Luo Y, Regli L, Bozinov O, Sarnthein J. Clinical utility and limitations of intraoperative monitoring of visual evoked potentials. PLoS One. 2015;10(3):e0120525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Houlden DA, Turgeon CA, Polis T, Sinclair J, Coupland S, Bourque P, et al. Intraoperative flash VEPs are reproducible in the presence of low amplitude EEG. J Clin Monit Comput. 2014;28:275–85.

    Article  PubMed  Google Scholar 

  4. Duffau H. Intraoperative monitoring of visual function. Acta Neurochir (Wien). 2011;153:1929–30.

    Article  Google Scholar 

  5. Wright JE, Arden G, Jones BR. Continuous monitoring of the visually evoked response during intra-orbital surgery. Trans Ophthalmol Soc U K. 1973;93:311–4.

    CAS  PubMed  Google Scholar 

  6. Handel N, Law J, Hoehn R, Kirsch W. Monitoring visual evoked response during craniofacial surgery. Ann Plast Surg. 1979;2:257–8.

    Article  CAS  PubMed  Google Scholar 

  7. Allen A, Starr A, Nudleman K. Assessment of sensory function in the operating room utilizing cerebral evoked potentials: a study of fifty-six surgically anesthetized patients. Clin Neurosurg. 1981;28:457–81.

    CAS  PubMed  Google Scholar 

  8. Grundy BL. Intraoperative monitoring of sensory-evoked potentials. Anesthesiology. 1983;58:72–87.

    Article  CAS  PubMed  Google Scholar 

  9. Albright AL, Sclabassi RJ. Cavitron ultrasonic surgical aspirator and visual evoked potential monitoring for chiasmal gliomas in children. Report of two cases. J Neurosurg. 1985;63:138–40.

    Article  CAS  PubMed  Google Scholar 

  10. Costa e Silva I, Wang AD, Symon L. The application of flash visual evoked potentials during operations on the anterior visual pathways. Neurol Res. 1985;7:11–6.

    Article  PubMed  Google Scholar 

  11. Burrows FA, Hillier SC, McLeod ME, Iron KS, Taylor MJ. Anterior fontanel pressure and visual evoked potentials in neonates and infants undergoing profound hypothermic circulatory arrest. Anesthesiology. 1990;73:632–6.

    Article  CAS  PubMed  Google Scholar 

  12. Sloan TB. Evoked potential monitoring. Int Anesthesiol Clin. 1996;34:109–36.

    Article  CAS  PubMed  Google Scholar 

  13. Duffau H, Velut S, Mitchell M-C, Gatignol P, Capelle L. Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations. Acta Neurochir (Wien). 2004;146:265–9. discussion 269–70.

    Article  CAS  Google Scholar 

  14. Benedičič M, Bošnjak R. Optic nerve potentials and cortical potentials after stimulation of the anterior visual pathway during neurosurgery. Doc Ophthalmol Adv Ophthalmol. 2011;122:115–25.

    Article  Google Scholar 

  15. Benedičič M, Bošnjak R. Intraoperative monitoring of the visual function using cortical potentials after electrical epidural stimulation of the optic nerve. Acta Neurochir (Wien). 2011;153:1919–27.

    Article  Google Scholar 

  16. Landi A, Pirillo D, Cilia R, Antonini A, Sganzerla EP. Cortical visual evoked potentials recorded after optic tract near field stimulation during GPi-DBS in non-cooperative patients. Clin Neurol Neurosurg. 2011;113:119–22.

    Article  PubMed  Google Scholar 

  17. San-Juan D, de Dios Del Castillo CJ, Villegas TG, Elizondo DL, Torrontegui JAF, Anschel DJ. Visual intraoperative monitoring of occipital arteriovenous malformation surgery. Clin Neurol Neurosurg. 2011;113:680–2.

    Article  PubMed  Google Scholar 

  18. Chung SB, Park CW, Seo DW, Kong DS, Park SK. Intraoperative visual evoked potential has no association with postoperative visual outcomes in transsphenoidal surgery. Acta Neurochir (Wien). 2012;154:1505–10.

    Google Scholar 

  19. Ogawa Y, Nakagawa A, Washio T, Arafune T, Tominaga T. Tissue dissection before direct manipulation to the pathology with pulsed laser-induced liquid jet system in skull base surgery: preservation of fine vessels and maintained optic nerve function. Acta Neurochir (Wien). 2013;155:1879–86.

    Article  Google Scholar 

  20. Kamio Y, Sakai N, Sameshima T, Takahashi G, Koizumi S, Sugiyama K, et al. Usefulness of intraoperative monitoring of visual evoked potentials in transsphenoidal surgery. Neurol Med Chir (Tokyo). 2014;54:606–11.

    Article  Google Scholar 

  21. Padalino DJ, Melnyk V, Allott G, Deshaies EM. Electroretinography during embolization of an ophthalmic arteriovenous fistula. Surg Neurol Int. 2013;4:40.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goto T, Tanaka Y, Kodama K, Kusano Y, Sakai K, Hongo K. Loss of visual evoked potential following temporary occlusion of the superior hypophyseal artery during aneurysm clip placement surgery. J Neurosurg Pediatr. 2007;107:865–7.

    Article  Google Scholar 

  23. Kodama K, Goto T, Sato A, Sakai K, Tanaka Y, Hongo K. Standard and limitation of intraoperative monitoring of the visual evoked potential. Acta Neurochir (Wien). 2010;152:643–8.

    Article  Google Scholar 

  24. Sasaki T, Itakura T, Suzuki K, Kasuya H, Munakata R, Muramatsu H, et al. Intraoperative monitoring of visual evoked potential: introduction of a clinically useful method. J Neurosurg. 2010;112:273–84.

    Article  PubMed  Google Scholar 

  25. Sasaki T, Ichikawa T, Sakuma J, Suzuki K, Matsumoto M, Itakura T, et al. Intraoperative monitoring of visual evoked potentials [in Japanese]. Masui. 2006;55:302–13.

    PubMed  Google Scholar 

  26. Feinsod M, Selhorst JB, Hoyt WF, Wilson CB. Monitoring optic nerve function during craniotomy. J Neurosurg. 1976;44:29–31.

    Article  CAS  PubMed  Google Scholar 

  27. Herzon GD, Zealear DL. Intraoperative monitoring of the visual evoked potential during endoscopic sinus surgery. Otolaryngol Head Neck Surg. 1994;111:575–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zaaroor M, Pratt H, Feinsod M, Schacham SE. Real-time monitoring of visual evoked potentials. Isr J Med Sci. 1993;29:17–22.

    CAS  PubMed  Google Scholar 

  29. Ota T, Kawai K, Kamada K, Kin T, Saito N. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J Neurosurg. 2010;112:285–94.

    Article  PubMed  Google Scholar 

  30. Wilson WB, Kirsch WM, Neville H, Stears J, Feinsod M, Lehman RA. Monitoring of visual function during parasellar surgery. Surg Neurol. 1976;5:323–9.

    CAS  PubMed  Google Scholar 

  31. Koshino K, Kuroda R, Mogami H, Takimoto H. Flashing diode evoked responses for detecting optic nerve function during surgery. Med J Osaka Univ. 1978;29(1–2):39–47.

    CAS  PubMed  Google Scholar 

  32. Cedzich C, Schramm J, Fahlbusch R. Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function? Neurosurgery. 1987;21:709.

    Article  CAS  PubMed  Google Scholar 

  33. Raudzens PA. Intraoperative monitoring of evoked potentials. Ann N Y Acad Sci. 1982;388:308–26.

    Article  CAS  PubMed  Google Scholar 

  34. Cedzich C, Schramm J, Mengedoht CF, Fahlbusch R. Factors that limit the use of flash visual evoked potentials for surgical monitoring. Electroencephalogr Clin Neurophysiol. 1988;71:142–5.

    Article  CAS  PubMed  Google Scholar 

  35. Cedzich C, Schramm J. Monitoring of flash visual evoked potentials during neurosurgical operations. Int Anesthesiol Clin. 1990;28:165–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hamaguchi K, Nakagawa I, Hidaka S, Uesugi F, Kubo T, Kato T. Effect of propofol on visual evoked potentials during neurosurgery. Masui. 2005;54:998–1002.

    PubMed  Google Scholar 

  37. Nakagawa I, Hidaka S, Okada H, Kubo T, Okamura K, Kato T. Effects of sevoflurane and propofol on evoked potentials during neurosurgical anesthesia. Masui. 2006;55:692–8.

    PubMed  Google Scholar 

  38. Nau HE, Hess W, Pohlen G, Marggraf G, Rimpel J. Evoked potentials in intracranial operations: current status and our experiences [in German]. Anaesthesist. 1987;36:116–25.

    CAS  PubMed  Google Scholar 

  39. Lorenz M, Renella RR. Intraoperative monitoring: visual evoked potentials in surgery of the sellar region [in German]. Zentralbl Neurochir. 1989;50:12–5.

    CAS  PubMed  Google Scholar 

  40. Chacko AG, Babu KS, Chandy MJ. Value of visual evoked potential monitoring during trans-sphenoidal pituitary surgery. Br J Neurosurg. 1996;10:275–8.

    Article  CAS  PubMed  Google Scholar 

  41. Wiedemayer H, Fauser B, Armbruster W, Gasser T, Stolke D. Visual evoked potentials for intraoperative neurophysiologic monitoring using total intravenous anesthesia. J Neurosurg Anesthesiol. 2003;15:19–24.

    Article  PubMed  Google Scholar 

  42. Wiedemayer H, Fauser B, Sandalcioglu IE, Armbruster W, Stolke D. Observations on intraoperative monitoring of visual pathways using steady-state visual evoked potentials. Eur J Anaesthesiol. 2004;21:429–33.

    Article  CAS  PubMed  Google Scholar 

  43. Bergholz R, Lehmann TN, Fritz G, Rüther K. Fourier transformed steady-state flash evoked potentials for continuous monitoring of visual pathway function. Doc Ophthalmol. 2007;116:217–29.

    Article  PubMed  Google Scholar 

  44. Hussain SS, Laljee HC, Horrocks JM, Tec H, Grace AR. Monitoring of intra-operative visual evoked potentials during functional endoscopic sinus surgery (FESS) under general anaesthesia. J Laryngol Otol. 1996;110:31–6.

    Article  CAS  PubMed  Google Scholar 

  45. Neuloh G. Time to revisit VEP monitoring? Acta Neurochir (Wien). 2010;152:649–50.

    Article  Google Scholar 

  46. Miyake Y, Horiguchi M. Electroretinographic alterations during vitrectomy in human eyes. Graefes Arch Clin Exp Ophthalmol. 1998;236:13–7.

    Article  CAS  PubMed  Google Scholar 

  47. Miyake Y, Yagasaki K, Horiguchi M. Electroretinographic monitoring of retinal function during eye surgery. Arch Ophthalmol. 1991;109:1123–6.

    Article  CAS  PubMed  Google Scholar 

  48. Montezuma SR, Rizzo JF, Ziv OR. Combined vitrectomy lens and contact electrode for erg recording during surgery. Retina. 2002;22:828–9.

    Article  PubMed  Google Scholar 

  49. Kikuchi Y, Sasaki T, Matsumoto M, Oikawa T, Itakura T, Kodama N. Optic nerve evoked potentials elicited by electrical stimulation. Neurol Med Chir (Tokyo). 2005;45:349–55. discussion 354–5.

    Article  Google Scholar 

  50. Bošnjak R, Benedičič M. Direct epidural electrical stimulation of the optic nerve: a new method for intraoperative assessment of function. J Neurosurg Pediatr. 2008;109:647–53.

    Google Scholar 

  51. Tashiro C, Muranishi R, Gomyo I, Mashimo T, Tomi K, Yoshiya I. Electroretinogram as a possible monitor of anesthetic depth. Graefes Arch Clin Exp Ophthalmol. 1986;224:473–6.

    Article  CAS  PubMed  Google Scholar 

  52. Yagi M, Tashiro C, Yoshiya I. Changes in the electroretinogram during enflurane anesthesia [in Japanese]. Masui. 1989;38:1438–43.

    CAS  PubMed  Google Scholar 

  53. Nogawa T, Katayama K, Okuda H, Uchida M. Changes in the latency of the maximum positive peak of visual evoked potential during anesthesia. Nihon Geka Hokan. 1991;60:143–53.

    CAS  PubMed  Google Scholar 

  54. Zimmerer R, Rana M, Schumann P, Gellrich N-C. Diagnosis and treatment of optic nerve trauma. Facial Plast Surg. 2014;30:518–27.

    Article  CAS  PubMed  Google Scholar 

  55. Zimmerer R, Schattmann K, Essig H, Jehn P, Metzger M, Kokemüller H, et al. Efficacy of transcutaneous transseptal orbital decompression in treating acute retrobulbar hemorrhage and a literature review. Craniomaxillofac Trauma Reconstr. 2014;7:17–26.

    PubMed  Google Scholar 

  56. Zhu Y, Song G, Tang D, Zhai X, Tian W. Monitor visual function with flash visual evoked potential during orbital surgery [in Chinese]. Zhonghua Yan Ke Za Zhi. 2000;36:445–8.

    CAS  PubMed  Google Scholar 

  57. Nebbioso M, Lenarduzzi F, Pucci B, Plateroti AM, Rispoli E. Surgical management by means of electroretinographic examination during extracorporeal circulation. Ann Ital Chir. 2012;83:523–8.

    PubMed  Google Scholar 

  58. Kamada K, Todo T, Morita A, Masutani Y, Aoki S, Ino K, et al. Functional monitoring for visual pathway using real-time visual evoked potentials and optic-radiation tractography. Neurosurgery. 2005;57(1 Suppl):121–7.

    PubMed  Google Scholar 

  59. Lozano A, Hutchison W, Kiss Z, Tasker R, Davis K, Dostrovsky J. Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg. 1996;84:194–202.

    Article  CAS  PubMed  Google Scholar 

  60. Yokoyama T, Sugiyama K, Nishizawa S, Yokota N, Ohta S, Uemura K. Visual evoked potentials during posteroventral pallidotomy for Parkinson’s disease. Neurosurgery. 1999;44:815–22. discussion 822–4.

    Article  CAS  PubMed  Google Scholar 

  61. Cohen BA, Baldwin ME. Visual-evoked potentials for intraoperative neurophysiology monitoring: another flash in the pan? J Clin Neurophysiol. 2011;28:599–601.

    Article  PubMed  Google Scholar 

  62. Thirumala PD, Habeych ME, Crammond DJ, Balzer JR. Neurophysiologic intraoperative monitoring of olfactory and optic nerves. J Clin Neurophysiol. 2011;28:538–42.

    Article  PubMed  Google Scholar 

  63. Schumann P, Kokemüller H, Tavassol F, Lindhorst D, Lemound J, Essig H, et al. Optic nerve monitoring. Craniomaxillofac Trauma Reconstr. 2013;6:75–86.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moller A. Evoked potentials in intraoperative monitoring. New York: Williams & Wilkins; 1988.

    Google Scholar 

  65. Inui K, Sannan H, Miki K, Kaneoke Y, Kakigi R. Timing of early activity in the visual cortex as revealed by simultaneous MEG and ERG recordings. Neuroimage. 2006;30:239–44.

    Article  PubMed  Google Scholar 

  66. Tremblay F, Parkinson JE. Alteration of electroretinographic recordings when performed under sedation or halogenate anesthesia in a pediatric population. Doc Ophthalmol. 2003;107:271–9.

    Article  PubMed  Google Scholar 

  67. Holder GE. Electrophysiological assessment of optic nerve disease. Eye (Lond). 2004;18:1133–43.

    Article  CAS  Google Scholar 

  68. Chiappa K. Evoked potential in clinical medicine. New York: Raven; 1983.

    Google Scholar 

  69. Towle VL, Cakmur R, Cao Y, Brigell M, Parmeggiani L. Locating VEP equivalent dipoles in magnetic resonance images. Int J Neurosci. 1995;80(1–4):105–16.

    Article  CAS  PubMed  Google Scholar 

  70. Nehamkin S, Windom M, Syed TU. Visual evoked potentials. Am J Electroneurodiagnostic Technol. 2008;48:233–48.

    PubMed  Google Scholar 

  71. Walsh P, Kane N, Butler S. The clinical role of evoked potentials. J Neurol Neurosurg Psychiatry. 2005;76 Suppl 2:ii16–22.

    PubMed  PubMed Central  Google Scholar 

  72. Harding GF, Smith VH, Yorke HC. A contact lens photostimulator for surgical monitoring. Electroencephalogr Clin Neurophysiol. 1987;66(3):322–6.

    Article  CAS  PubMed  Google Scholar 

  73. American Electroencephalographic Society. Guidelines for intraoperative monitoring of sensory evoked potentials. J Clin Neurophysiol. 1987;4:397–416.

    Article  Google Scholar 

  74. Kriss A, Halliday AM, Halliday E, Pratt RT. Evoked potentials following unilateral ECT. II. The flash evoked potential. Electroencephalogr Clin Neurophysiol. 1980;48:490–501.

    Article  CAS  PubMed  Google Scholar 

  75. Noonan BD, Wilkus RJ, Chatrian GE, Lettich E. The influence of direction of gaze on the human electroretinogram recorded from periorbital electrodes: a study utilizing a summating technique. Electroencephalogr Clin Neurophysiol. 1973;35:495–502.

    Article  CAS  PubMed  Google Scholar 

  76. Rubinstein MP, Harding GF. The visually evoked subcortical potential: is related to the electroretinogram? Invest Ophthalmol Vis Sci. 1981;21:335–44.

    CAS  PubMed  Google Scholar 

  77. Esakowitz L, Kriss A, Shawkat F. A comparison of flash electroretinograms recorded from Burian Allen, JET, C-glide, gold foil, DTL and skin electrodes. Eye (Lond). 1993;7(Pt 1):169–71.

    Article  Google Scholar 

  78. Gur M, Gath I. Time and frequency analysis of simultaneously recorded corneal and non-corneal electroretinogram. J Biomed Eng. 1979;1:172–4.

    Article  CAS  PubMed  Google Scholar 

  79. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, et al. ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol. 2008;116:1–11.

    Article  PubMed  Google Scholar 

  80. Nuwer MR, Dawson EC. Intraoperative evoked potential monitoring of the spinal cord. A restricted filter, scalp method during Harrington instrumentation for scoliosis. Clin Orthop. 1984;183:42–50.

    Google Scholar 

  81. Martinez Piñeiro A, Cubells C, Garcia P, Castaño C, Dávalos A, Coll-Canti J. Implementation of intraoperative neurophysiological monitoring during endovascular procedures in the central nervous system. Interv Neurol. 2015;3:85–100.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Keenan NK, Taylor MJ, Coles JG, Prieur BJ, Burrows FA. The use of VEPs for CNS monitoring during continuous cardiopulmonary bypass and circulatory arrest. Electroencephalogr Clin Neurophysiol. 1987;68:241–6.

    Article  CAS  PubMed  Google Scholar 

  83. Reilly EL, Kondo C, Brunberg JA, Doty DB. Visual evoked potentials during hypothermia and prolonged circulatory arrest. Electroencephalogr Clin Neurophysiol. 1978;45:100–6.

    Article  CAS  PubMed  Google Scholar 

  84. Markand ON, Warren CH, Moorthy SS, Stoelting RK, King RD. Monitoring of multimodality evoked potentials during open heart surgery under hypothermia. Electroencephalogr Clin Neurophysiol. 1984;59:432–40.

    Article  CAS  PubMed  Google Scholar 

  85. Burrows FA, Bissonnette B. Cerebral blood flow velocity patterns during cardiac surgery utilizing profound hypothermia with low-flow cardiopulmonary bypass or circulatory arrest in neonates and infants. Can J Anaesth. 1993;40:298–307.

    Article  CAS  PubMed  Google Scholar 

  86. Nenekidis I, Pournaras CJ, Tsironi E, Tsilimingas N. Vision impairment during cardiac surgery and extracorporeal circulation: current understanding and the need for further investigation. Acta Ophthalmol. 2012;90:e168–72.

    Article  PubMed  Google Scholar 

  87. Brandli A, Stone J. Remote ischemia influences the responsiveness of the retina: observations in the rat. Invest Ophthalmol Vis Sci. 2014;55:2088–96.

    Article  PubMed  Google Scholar 

  88. Møller AR, Burgess JE, Sekhar LN. Recording compound action potentials from the optic nerve in man and monkeys. Electroencephalogr Clin Neurophysiol. 1987;67:549–55.

    Article  PubMed  Google Scholar 

  89. Curatolo JM, Macdonell RA, Berkovic SF, Fabinyi GC. Intraoperative monitoring to preserve central visual fields during occipital corticectomy for epilepsy. J Clin Neurosci. 2000;7:234–7.

    Article  CAS  PubMed  Google Scholar 

  90. Tobimatsu S, Shima F, Ishido K, Kato M. Visual evoked potentials in the vicinity of the optic tract during stereotactic pallidotomy. Electroencephalogr Clin Neurophysiol. 1997;104:274–9.

    Article  CAS  PubMed  Google Scholar 

  91. Benedičič M, Beltram M, Olup BD, Bošnjak R. Cortical potentials after electrical intraneural stimulation of the optic nerve during orbital enucleation. Doc Ophthalmol Adv Ophthalmol. 2012;125:195–202.

    Article  Google Scholar 

  92. Russ W, Kling D, Loesevitz A, Hempelmann G. Effect of hypothermia on visual evoked potentials (VEP) in humans. Anesthesiology. 1984;61:207–10.

    Article  CAS  PubMed  Google Scholar 

  93. Wongpichedchai S, Hansen RM, Koka B, Gudas VM, Fulton AB. Effects of halothane on children’s electroretinograms. Ophthalmology. 1992;99:1309–12.

    Article  CAS  PubMed  Google Scholar 

  94. Raitta C, Karhunen U, Seppäläinen AM. Changes in the electroretinogram and visual evoked potentials during general anaesthesia using enflurane. Graefes Arch Clin Exp Ophthalmol. 1982;218:294–6.

    Article  CAS  PubMed  Google Scholar 

  95. Iohom G, Collins I, Murphy D, Awad I, O’Connor G, McCarthy N, et al. Postoperative changes in visual evoked potentials and cognitive function tests following sevoflurane anaesthesia. Br J Anaesth. 2001;87:855–9.

    Article  CAS  PubMed  Google Scholar 

  96. Iohom G, Whyte A, Flynn T, O’Connor G, Shorten G. Postoperative changes in the full-field electroretinogram following sevoflurane anaesthesia. Eur J Anaesthesiol. 2004;21:272–8.

    Article  CAS  PubMed  Google Scholar 

  97. Andréasson S, Tornqvist K, Ehinger B. Full-field electroretinograms during general anesthesia in normal children compared to examination with topical anesthesia. Acta Ophthalmol. 1993;71:491–5.

    Article  Google Scholar 

  98. Tanskanen P, Kylmä T, Kommonen B, Karhunen U. Propofol influences the electroretinogram to a lesser degree than thiopentone. Acta Anaesthesiol Scand. 1996;40:480–5.

    Article  CAS  PubMed  Google Scholar 

  99. Chi OZ, McCoy CL, Field C. Effects of fentanyl anesthesia on visual evoked potentials in humans. Anesthesiology. 1987;67:827–30.

    Article  CAS  PubMed  Google Scholar 

  100. Loughnan BL, Sebel PS, Thomas D, Rutherfoord CF, Rogers H. Evoked potentials following diazepam or fentanyl. Anaesthesia. 1987;42:195–8.

    Article  CAS  PubMed  Google Scholar 

  101. Sloan T. Anesthesia and intraoperative neurophysiological monitoring in children. Childs Nerv Syst. 2009;26:227–35.

    Article  PubMed  Google Scholar 

  102. Uhl RR, Squires KC, Bruce DL, Starr A. Effect of halothane anesthesia on the human cortical visual evoked response. Anesthesiology. 1980;53:273–6.

    Article  CAS  PubMed  Google Scholar 

  103. Chi OZ, Field C. Effects of isoflurane on visual evoked potentials in humans. Anesthesiology. 1986;65:328–30.

    Article  CAS  PubMed  Google Scholar 

  104. Kameyama Y. Effect of isoflurane and sevoflurane on evoked potentials and EEG. Jpn J Anesth. 1994;43:657–64.

    CAS  Google Scholar 

  105. Sebel PS, Flynn PJ, Ingram DA. Effect of nitrous oxide on visual, auditory and somatosensory evoked potentials. Br J Anaesth. 1984;56:1403–7.

    Article  CAS  PubMed  Google Scholar 

  106. Yamashiro H. Differentiation of brain stem anesthesia from high spinal anesthesia using auditory brain stem response. Masui. 1990;39:1704–7.

    CAS  PubMed  Google Scholar 

  107. Fenwick PBC, Stone SA, Bushman J, Enderby D. Changes in the pattern reversal visual evoked potential as a function of inspired nitrous oxide concentration. Electroencephalogr Clin Neurophysiol. 1984;57:178–83.

    Article  CAS  PubMed  Google Scholar 

  108. Hou WY, Lee WY, Lin SM, Liu CC, Susceto L, Sun WZ, Lin SY. The effects of ketamine, propofol and nitrous oxide on visual evoked potentials during fentanyl anesthesia. Ma Zui Xue Za Zhi. 1993;31:97–102.

    CAS  PubMed  Google Scholar 

  109. Chi OZ, Ryterband S, Field C. Visual evoked potentials during thiopentone-fentanyl-nitrous oxide anaesthesia in humans. Can J Anaesth. 1989;36:637–40.

    Article  CAS  PubMed  Google Scholar 

  110. Russ W, Luben V, Hempelmann G. Der EinfluB der Neuroleptanalgesie auf das visuelle evozierte Potential (VEP) des Menschen. Anaesthesist. 1982;31:575–8.

    CAS  PubMed  Google Scholar 

  111. Makela K, Harkainen K, Rorarius M, Jantti V. Suppression of F-VEP during isoflurane-induced EEG suppression. Electroencephalogr Clin Neurophysiol. 1996;100:269–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra C. Toleikis M.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Toleikis, S.C., Toleikis, J.R. (2017). Visual-Evoked Potentials. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics