Skip to main content
Log in

Fourier transformed steady-state flash evoked potentials for continuous monitoring of visual pathway function

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Monitoring of somatosensory, motor and auditory pathway function by evoked potentials is routine in surgery placing these pathways at risk. However, visual pathway function remains yet inaccessible to a reliable monitoring. For this study, a method of continuous recordings was developed and tested. Steady-state visual evoked potentials were elicited by flash stimulation at 16 Hz and analysed using discrete Fourier transform. Amplitude and phase of the fundamental response were dynamically averaged and continuously plotted in a trend graph. The method was applied on awake individuals with normal vision and on patients undergoing neurosurgery. In most individuals it was possible to continuously record significant responses. Surprisingly, characteristic time-courses of amplitude and phase were observed in several subjects. These findings were attributed mainly to flicker-adaptation. During anesthesia, amplitude and signal-to-noise ratio were markedly smaller. Signal recognition was facilitated when potentials were recorded with a subdural electrode placed directly at the occipital pole. The anesthetic agent propofol had a major impact on the recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AEP:

auditory evoked potential

EP:

evoked potential

DFT:

discrete Fourier transform

LED:

light emitting diode

RAPD:

relative afferent pupillary defect

SEP:

sensory evoked potential

SNR:

signal-to-noise ratio

SSEP:

somatosensory evoked potential

ssVEP:

steady-state visual evoked potential

TIVA:

total intravenous anesthesia

tVEP:

transient visual evoked potential

VEP:

visual evoked potential

References

  1. Burke D, Nuwer MR, Daube J, Fischer C, Schramm J, Yingling CD, Jones SJ (1999) Intraoperative monitoring. Electroencephalogr Clin Neurophysiol Suppl 52:133–148

    PubMed  CAS  Google Scholar 

  2. Nuwer MR, Dawson EG, Carlson LG, Kanim LEA, Sherman JE (1995) Somatosensory evoked potential monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96:6–11

    Article  PubMed  CAS  Google Scholar 

  3. Russ W, Krumholz W, Hempelmann G (1984) Visuell evozierte Potentiale (VEP) in Anästhesie und Intensivmedizin. Anaesthesist 33:154–160

    PubMed  CAS  Google Scholar 

  4. Sloan TB (1996) Evoked potential monitoring. Int Anesthesiol Clin Summer 34(3):109–36

    Article  CAS  Google Scholar 

  5. Raudzens PA (1982) Intraoperative monitoring of evoked potentials. Ann NY Acad Sci 55:308

    Article  Google Scholar 

  6. Lorenz M, Renella RR (1989) Intraoperative monitoring: visual evoked potentials in surgery of the sellar region. Zentralbl Neurochir 50(1):12–15

    PubMed  CAS  Google Scholar 

  7. Cedzich C, Schramm J, Mengedoht CF, Fahlbusch R (1988) Factors that limit the use of flash visual evoked potentials for surgical monitoring. Electroencephalogr Clin Neurophysiol 71:142–145

    Article  PubMed  CAS  Google Scholar 

  8. Cedzich C, Schramm J, Fahlbusch R (1987) Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function? Neurosurgery 21(5):709–715

    Article  PubMed  CAS  Google Scholar 

  9. Wiedemayer H, Fauser B, Sandalcioglu IE, Armbruster W, Stolke D (2004) Observations on intraoperative monitoring of visual pathways using steady-state visual evoked potentials. Eur J Anaesthesiol 21:429–433

    Article  PubMed  CAS  Google Scholar 

  10. Harding GFA, Bland JDP, Smith VH (1990) Visual evoked potential monitoring of optic nerve function during surgery. J Neurol Neurosurg Psychiatry 53:890–895

    Article  PubMed  CAS  Google Scholar 

  11. Herzon GD, Zealear DL (1994) Intraoperative monitoring of the visual evoked potential during endoscopic sinus surgery. Otolaryngol Head Neck Surg 111(5):575–579

    Article  PubMed  CAS  Google Scholar 

  12. Hussain SSM, Laljee HCK, Horrocks JM, Tec H, Grace ARH (1996) Monitoring of intra-operative visual evoked potentials during functional endoscopic sinus surgery (FESS) under general anaesthesia. J Laryngol Otol 110:31–36

    Article  PubMed  CAS  Google Scholar 

  13. Chacko AG, Babu KS, Chandy MJ (1996) Value of visual evoked potential monitoring during trans-sphenoidal pituitary surgery. Br J Neurosurg 10:275–278

    Article  PubMed  CAS  Google Scholar 

  14. Hajek A, Zrenner E (1988) Verbesserte objektive Visusprüfung mit visuell evozierten corticalen Potentialen durch schnelle Reizmustersequenzen unterschiedlicher Raumfrequenz. Fortschr Ophthalmol 85:550–554

    PubMed  CAS  Google Scholar 

  15. Peachey NS, Demarco Jr PJ, Ubilluz R, Yee W (1994) Short-term changes in the response characteristics of the human visual evoked potential. Vision Res 34(21):2823–2831

    Article  PubMed  CAS  Google Scholar 

  16. Heine M, Meigen T (2004) The dependency of simultaneously recorded retinal and cortical potentials on temporal frequency. Doc Ophthalmol 108:1–8

    Article  PubMed  Google Scholar 

  17. Harding G, Wilkins AJ, Erba G, Barkley GL, Fisher RS (2005) Photic- and pattern-induced seizures: expert consensus of the epilepsy foundation of America working group. Epilepsia 46(9):1423–1425

    Article  PubMed  Google Scholar 

  18. Meigen T, Bach M (2000) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98:207–232

    Article  Google Scholar 

  19. Wiedemayer H, Fauser B, Armbruster W, Gasser T, Stolke D (2003) Visual evoked potentials for intraoperative neurophysiologic monitoring using total intravenous anesthesia. J Neurosurg Anesthesiol 15(1):19–24

    Article  PubMed  Google Scholar 

  20. Pratt H, Martin WH, Bleich N, Zaaroor, Schacham SE (1994) A high-intensity. goggle-mounted flash-stimulator for short-latency visual evoked potentials. Electroencephalogr Clin Neurophysiol 92:469–472

    Article  PubMed  CAS  Google Scholar 

  21. Rudner R, Jalowiecki P, Hagihira S (2005) Abnormally low bispectral index and isoelectric electroencephalogram observed after administration of small doses of propofol during induction of anesthesia. J Anesth 19:339–342

    Article  PubMed  Google Scholar 

  22. Hamaguchi K, Nakagawa I, Hidaka S, Uesugi F, Kubo T, Kato T (2005) Effect of propofol on visual evoked potentials during neurosurgery. Masui 54(9):998–1002

    PubMed  Google Scholar 

  23. Chi OZ, Field C (1990) Effects of enflurane on visual evoked potentials in humans. Br J Anaesth 64:163–166

    Article  PubMed  CAS  Google Scholar 

  24. Zaaror M, Pratt H, Feinsod M, Schacham SE (1993) Real-time monitoring of visual evoked potentials. Israel J Med Sci 29:17–22

    Google Scholar 

  25. Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137:346–353

    Article  PubMed  CAS  Google Scholar 

  26. Xin D, Seiple W, Holopigian K, Kupersmith MJ (1994) Visual evoked potentials following abrupt contrast changes. Vision Res 34(21):2813–2821

    Article  PubMed  CAS  Google Scholar 

  27. Ho WA, Berkley MA (1988) Evoked potential estimates of the time course of adaptation and recovery to counterphase gratings. Vision Res 28(12):1287–1296

    Article  PubMed  CAS  Google Scholar 

  28. Greenlee MW, Heitger F (1988) The functional role of contrast adaptation. Vision Res 28(7):791–797

    Article  PubMed  CAS  Google Scholar 

  29. Heinrich SP, Bach M (2001) Adaptation dynamics in pattern-reversal visual evoked potentials. Doc Ophthalmol 102:141–156

    Article  PubMed  CAS  Google Scholar 

  30. Shady S, MacLeod DIA, Fisher HS (2004) Adaptation from invisible flicker. PNAS 101(14):5170–5173

    Article  PubMed  CAS  Google Scholar 

  31. Anstis A (1996) Adaptation to peripheral flicker. Vision Res 36(21):3479–3485

    Article  PubMed  CAS  Google Scholar 

  32. Barlow HB, Macleod DIA, van Meeteren A (1976) Adaptation to gratings: no compensatory advantages found. Vision Res 16:1043–1045

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rüther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergholz, R., Lehmann, T.N., Fritz, G. et al. Fourier transformed steady-state flash evoked potentials for continuous monitoring of visual pathway function. Doc Ophthalmol 116, 217–229 (2008). https://doi.org/10.1007/s10633-007-9085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9085-6

Keywords

Navigation