Skip to main content

Abstract

Any kind of freshwater aquatic body and some other wet habitats (leaf litter, sphagnum mat, hot springs, hyporheic zones, groundwater, caves, tree holes, etc.) will contain one or more species of freshwater crustacean that belong to Cladocera or Copepoda. The majority of them are planktonic filtrators, an important component of the zooplankton community. Often, they are dominant secondary producers, algae, bacteria, and detrital grazers capable of controlling phytoplankton (transferring more than 50 % of fixed carbon to higher trophic levels), while others are benthic omnivores or carnivorous predators (Gliwicz and Rybak 1976; Scavia 1980; McCauley 1984; Bruce et al. 2006). Both groups are an important component of the trophic food web, especially fish (among them species of economic importance). In addition, their excretions are source of dissolved nutrients (Lehman 1980; Wen and Peters 1994). In lakes, zooplankton excretion of dissolved nutrients can account for up to 52 % and 48 % of the phytoplankton demand for phosphorus (P) and nitrogen (N), respectively (Bruce et al. 2006). There are species with cosmopolitan geographic ranges restricted to one or more continents, but some are endemic species restricted to a single site or relatively small area. Cladocera and Copepoda are small-sized animals mostly around 0.3–6 mm, where the largest species is (Cladocera), measuring around 10 mm in length. Cladocera has two reproduction strategies, namely, parthenogenetic females that just clone themselves asexually and sexually reproducing females and males during autumn or environmental stress, like food shortage, temperature drop, or oxygen depletion. Copepoda have sexual reproduction and distinct sexes. Cladocera and Copepoda are able to survive harsh environmental conditions, by producing ephippia (Cladocera) and by diapause (an obligatory stop in development), dormancy (copepodites or adults), or diapausing (resting) eggs (Copepoda). Copepod resting eggs can rest for centuries in the bottom sediments (egg bank) and are able to hatch when the environmental conditions become optimal (Hairston 1995; Dussart and Defaye 2001; Nevalainen et al. 2011e). We call them time travelers and the science dealing with them resurrection ecology (Kerfoot and Weider 2004; Angeler 2007). Only a few fossils of Cladocera are known. Sparse individuals of Cladocera () were identified from pre-Quaternary fossils found in lake sediments in Mongolia (Smirnov 1992b) and Slovenian relic caves (Moldovan et al. 2011), but plenty of subfossils have been reported in lacustrine sediments of the Pleistocene (Frey 1960). Cladocera remains of European species are presented in the illustrated (photographs) atlas (Szeroczyńska and Sarmaja-Korjonen 2007). Subfossils of Cladocera have been used for a reconstruction of human influence on the environment (lakes) throughout history (Galbarczyk-Gąsiorowska et al. 2009), for a climate change reconstruction (Kamenik et al. 2007), or for Holocene environmental (lake trophic condition, temperature and ice cover, lake water level oscillation) history description (Adamska and Mikulski 1969; Mikulski and Adamska 1972; Mikulski 1978; Szeroczyńska et al. 2007; Nevalainen et al. 2011b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamska A, Mikulski JS (1969) Cladoceran remains in the superficial sediments of lakes as a typologic indicator. Zeszyty Naukowe UMK, Prace Stacji Limnologicznej w Ilawie 5:41–48

    Google Scholar 

  • Angeler DG (2007) Resurrection ecology and global climate change research in freshwater ecosystems. J North Am Benthol Soc 26(1):12–22

    Article  Google Scholar 

  • Bron JE, Frisch D, Goetze E, Johnson SC, Lee CE, Wyngaard GA (2011) Observing copepods through a genomic lens. Front Zool 8(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruce LC, Hamilton D, Imberger J, Gal G, Gophen M, Zohary T, Hambright KD (2006) A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecol Model 193(3–4):412–436

    Article  Google Scholar 

  • Buskey EJ, Peterson JO, Ambler JW (1996) The swarming behavior of the copepod Dioithona oculata: in situ and laboratory studies. Limnol Oceanogr 41:513–521

    Article  Google Scholar 

  • Dussart BH, Defaye D (2001) Copepoda. Introduction to the Copepoda. In: Dumont HJF (ed) Guides to the identification of the microinvertebrates of the continental waters of the world, vol 16, 2nd edn. Backhuys, Leiden, pp 1–344

    Google Scholar 

  • Elmoor-Loureiro LMA (2004b) Phylogenetic relationships among families of the order Anomopoda (Crustacea, Branchiopoda, Cladocera). Zootaxa 760:1–26

    Google Scholar 

  • Ferrari FD (1998) Setal developmental patterns of thoracopods of the Cyclopidae (Copepoda: Cyclopida) and their use in phylogenetic inference. J Crustac Biol 18(3):471–489

    Article  Google Scholar 

  • Frey DG (1960) The ecological significance of cladoceran remains in lake sediments. Ecology 41:785–790

    Article  Google Scholar 

  • Galbarczyk-Gąsiorowska L, Gąsiorowski M, Szeroczyńska K (2009) Reconstruction of human influence during the last two centuries on two small oxbow lakes near Warsaw (Poland). Hydrobiologia 631(1):173–183

    Article  Google Scholar 

  • Gliwicz ZM, Rybak JI (1976) Zooplankton. In: Selected problems of lake littoral ecology. PWN, Warszawa, pp 69–96

    Google Scholar 

  • Hairston NGJ (1995) Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76:1706–1711

    Article  Google Scholar 

  • Humes AG (1994) How many copepods? Hydrobiologia 292/293:1–7

    Article  Google Scholar 

  • Jeppesen E, Noges P, Davidson TA, Haberman J, Noges T, Blank K, Lauridsen TL, Sondergaard M, Sayer C, Laugaste R, Johansson LS, Bjerring R, Amsinck SL (2011) Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676(1):279–297

    Article  CAS  Google Scholar 

  • Kamenik C, Szeroczynska K, Schmidt R (2007) Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594:33–46

    Article  Google Scholar 

  • Kerfoot WC, Weider LJ (2004) Experimental paleoecology (resurrection ecology): chasing Van Valen’s Red Queen hypothesis. Limnol Oceanogr 49(4):1300–1316

    Article  Google Scholar 

  • Korponai J, Magyari EK, Buczko K, Iepure S, Namiotko T, Czako D, Koever C, Braun M (2011b) Cladocera response to Late Glacial to Early Holocene climate change in a South Carpathian mountain lake. Hydrobiologia 676(1):223–235

    Article  CAS  Google Scholar 

  • Larsson P, Weider L (1995) Cladocera as model organisms in biology—preface. Hydrobiologia 307(1–3):R9

    Google Scholar 

  • Lehman JT (1980) Nutrient recycling as an interface between algae and grazers in freshwater communities. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. The University Press of New England, Hanover, pp 251–263

    Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710

    Article  Google Scholar 

  • McCauley E (1984) The estimation of the abundance and biomass of zooplankton in samples. In: Downing JA, Rigler FH (eds) A manual of methods for the assessment of secondary productivity in fresh waters. IBP handbook, vol 17, 2nd edn. Blackwell Scientific, London, pp 228–265

    Google Scholar 

  • Mikulski JS (1978) Value of some biological indexes in case-histories of lakes. Verh Int Ver Limnol 20:992–996

    Google Scholar 

  • Mikulski JS, Adamska A (1972) Limnological post-glacial history of a lake of complicated origin. Verh Int Ver Limnol 18:1056–1062

    Google Scholar 

  • Moldovan O, Mihevc A, Miko L, Constantin S, Meleg I, Petculescu A, Bosak P (2011) Invertebrate fossils from cave sediments: a new proxy for pre-Quaternary paleoenvironments. Biogeosciences 8(7):1825–1837

    Article  Google Scholar 

  • Nevalainen L, Sarmaja-Korjonen K, Luoto TP (2011b) Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quatern Res 75(3):430–437

    Article  Google Scholar 

  • Nevalainen L, Luoto TP, Levine S, Manca M (2011e) Paleolimnological evidence for increased sexual reproduction in chydorids (Chydoridae, Cladocera) under environmental stress. J Limnol 70(2):255–262

    Article  Google Scholar 

  • Sanchez-Bayo F (2006) Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ Pollut 139(3):385–420

    Article  CAS  PubMed  Google Scholar 

  • Scavia D (1980) An ecological model of Lake Ontario, Canada, USA. Ecol Model 8:49–78

    Article  CAS  Google Scholar 

  • Smirnov NN (1992b) Mesozoic Anomopoda (Crustacea) from Mongolia. Zool J Linnean Soc 104(2):97–116

    Article  Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Swiecie, 84 pp. ISBN 978-83-924919-6-5

    Google Scholar 

  • Szeroczyńska K, Tatur A, Weckstrom J, Gąsiorowski M, Noryśkiewicz AM, Sienkiewicz E (2007) Holocene environmental history in northwest Finnish Lapland reflected in the multi-proxy record of a small subarctic lake. J Paleolimnol 38(1):25–47

    Article  Google Scholar 

  • Tilden AR, McCoole MD, Harmon SM, Baer KN, Christie AE (2011) Genomic identification of a putative circadian system in the cladoceran crustacean Daphnia pulex. Comp Biochem Physiol Part D Genomics Proteomics 6(3):282–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370

    Article  Google Scholar 

  • Wen YH, Peters RH (1994) Empirical-models of phosphorus and nitrogen-excretion rates by zooplankton. Limnol Oceanogr 39(7):1669–1679

    Article  CAS  Google Scholar 

  • Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Chang Biol 10(11):1844–1856

    Article  Google Scholar 

  • Wyngaard GA, Rasch EM, Grishanin AK (2002) Variable presence of a trait influencing large scale genomic reorganization in natural hybrids of Acanthocyclops vernalis-robustus complex (Crustacea: Copepoda). Mol Biol Cell 13:251A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Błędzki, L.A., Rybak, J.I. (2016). Introduction. In: Freshwater Crustacean Zooplankton of Europe . Springer, Cham. https://doi.org/10.1007/978-3-319-29871-9_1

Download citation

Publish with us

Policies and ethics