Skip to main content

Systematic Synthesis of Intensified Distillation Systems

  • Chapter
  • First Online:
Process Intensification in Chemical Engineering

Abstract

The choice of the optimal configuration for the separation of multicomponent mixtures represents one of the prevailing problems in the process industry. Simple distillation column sequences have been the favorite choice for long time, until the increase of the energy price makes these configurations no more competitive from an economic point of view. The research of alternative arrangements is an evergreen topic in the Chemical Engineering community. In this chapter a systematic methodology to generate different classes of distillation configurations is presented. The generation methodology is able to consider thermally coupled, thermodynamically equivalent structures and intensified alternatives with a less number of columns compared to the corresponding simple column sequences. The methodology described has the advantage to produce a complete set of alternatives, avoiding the trial and error procedure with random configurations picked up from the literature. Finally, the methodology described has the benefit to keep a clear connection between the simple column sequences and all the alternatives predicted. This aspect helps the designer in the definition of columns’ configuration parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Forbes RJ (1970) A short review history of the art of distillation. EJ Brill, Leiden

    Google Scholar 

  2. Humphrey JL, Seibert AF (1992) New horizons in distillation. Chem Eng 99(12):86–98

    CAS  Google Scholar 

  3. McCabe WL, Thiele EW (1925) Graphical design of fractionating columns. Ind Eng Chem 17(6):605–611

    Article  CAS  Google Scholar 

  4. Underwood AJV (1949) Fractional distillation of multicomponent mixtures. Ind Eng Chem 41(12):2844–2847

    Article  CAS  Google Scholar 

  5. Thompson RW, King CJ (1972) Systematic synthesis of separation schemes. AIChE J 18(5):941–948

    Article  CAS  Google Scholar 

  6. Nath R, Motard RL (1981) Evolutionary synthesis of separation processes. AIChE J 27(4):578–587

    Article  CAS  Google Scholar 

  7. Malone MF, Glinos K, Marquez FE, Douglas JM (1985) Simple, analytical criteria for the sequencing of distillation columns. AIChE J 31(4):683–689

    Article  CAS  Google Scholar 

  8. Moore CF (1992) Selection of controlled and manipulated variables in practical distillation control. Van Nostrand Reinhold, New York, pp 140–177, Chapter 8

    Book  Google Scholar 

  9. Hori ES, Skogestad S (2007) Selection of control structure and temperature location for two-product distillation columns. Chem Eng Res Des 85(3):293–306

    Article  CAS  Google Scholar 

  10. Skogestad S (2007) The dos and don’ts of distillation column control. Chem Eng Res Des 85(1):13–23

    Article  CAS  Google Scholar 

  11. Kaibel G, Schoenmakers H (2002) Process synthesis in industrial practice. In: 12th European symposium on computer aided process engineering, The Hague, May 26–29, 2002, pp 9–22

    Google Scholar 

  12. Fidkowski ZT (2006) Distillation configurations and their energy requirements. AIChE J 52(6):2098–2106

    Article  CAS  Google Scholar 

  13. Rong B-G, Kraslawski A, Turunen I (2003) Synthesis of functionally distinct thermally coupled configurations for quaternary distillations. Ind Eng Chem Res 42:1204–1214

    Article  CAS  Google Scholar 

  14. Rong B-G, Turunen I (2006) A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements. Chem Eng Res Des 84:1095–1116

    Article  CAS  Google Scholar 

  15. Agrawal R (2003) Synthesis of multicomponent distillation column configurations. AIChE J 49(29):379–401

    Article  CAS  Google Scholar 

  16. Shah VH, Agrawal R (2010) A matrix method for multicomponent distillation sequences. AIChE J 56(7):1759–1775

    Article  CAS  Google Scholar 

  17. Shenvi AA, Shah VH, Zeller JA, Agrawal R (2012) A synthesis method for multicomponent distillation sequences with fewer columns. AIChE J 58(8):2479–2494

    Article  CAS  Google Scholar 

  18. Caballero JA, Grossmann IE (2004) Design of distillation sequences: from conventional to fully thermallly coupled distillation systems. Comput Chem Eng 28:2307–2329

    Article  CAS  Google Scholar 

  19. Caballero JA, Grossmann IE (2006) Structural considerations and modeling in the synthesis of heat-integrated-thermally coupled distillation sequences. Ind Eng Chem Res 45:8454–8474

    Article  CAS  Google Scholar 

  20. Caballero JA, Grossmann IE (2012) Synthesis of complex thermally coupled distillation systems including divided wall columns. AIChE J 59:1139–1159

    Article  Google Scholar 

  21. Rong B-G, Kraslawski A (2002) Optimal design of distillation flowsheets with a lower number of thermal couplings for multicomponent separations. Ind Eng Chem Res 41:5716–5726

    Article  CAS  Google Scholar 

  22. Rong B-G, Kraslawski A (2003) Partially thermally coupled distillation systems for multi-component separations. AIChE J 49(5):1340–1347

    Article  CAS  Google Scholar 

  23. Rong B-G, Kraslawski A, Turunen I (2003) Synthesis of heat-integrated thermally coupled distillation systems for multicomponent separations. Ind Eng Chem Res 42:4329–4339

    Article  CAS  Google Scholar 

  24. Rong B-G, Turunen I (2006) Synthesis of new distillation systems by simultaneous thermal coupling and heat integration. Ind Eng Chem Res 45:3830–3842

    Article  CAS  Google Scholar 

  25. Rong B-G, Kraslawski A, Turunen I (2004) Synthesis and optimal design of thermodynamically equivalent thermally coupled distillation systems. Ind Eng Chem Res 43:5904–5915

    Article  CAS  Google Scholar 

  26. Errico M, Rong B-G, Tola G, Turunen I (2009) A method for systematic synthesis of multicomponent distillation systems with less than N-1 columns. Chem Eng Process: Process Intensif 48(4):907–920

    Article  CAS  Google Scholar 

  27. Rong B-G (2011) Synthesis of dividing wall columns (DWC) for multicomponent distillations—a systematic approach. Chem Eng Res Des 89(8):1281–1294

    Article  CAS  Google Scholar 

  28. Rong B-G, Errico M (2012) Synthesis of intensified simple column configurations for multicomponent distillations. Chem Eng Process: Process Intensif 62:1–17

    Article  CAS  Google Scholar 

  29. Rong B-G (2014) A systematic procedure for synthesis of intensified nonsharp distillation systems with fewer columns. Chem Eng Res Des 92:1955–1968

    Article  CAS  Google Scholar 

  30. Scully DB (1976) Interpretation of distillation of a three-component mixture on a ternary diagram. Ind Eng Chem Fundam 15(4):344–346

    Article  CAS  Google Scholar 

  31. Tedder DW, Rudd DF (1978) Parametric studies in industrial distillation. Part I. Design comparison. AIChE J 24(2):303–315

    Article  CAS  Google Scholar 

  32. Tedder DW, Rudd DF (1978) Parametric studies in industrial distillation. Part II. Heuristic optimization. AIChE J 24(2):316–323

    Article  CAS  Google Scholar 

  33. Lee JY, Kim YH, Hwang KS (2004) Application of a fully thermally coupled distillation column for fractionation process in naphtha reforming plant. Chem Eng Process: Process Intensif 43:495–501

    Article  CAS  Google Scholar 

  34. Lee JY, Kim YH, Hwang KS (2002) Design of gas concentration process with thermally coupled distillation column using HYSYS simulation. J Control Autom Syst Eng 8:842–846

    Article  Google Scholar 

  35. Stankiewicz A, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96:22–34

    CAS  Google Scholar 

  36. Giridhar A, Agrawal R (2010) Synthesis of distillation configurations: I. Characteristics of a good searching space. Comput Chem Eng 34:73–83

    Article  CAS  Google Scholar 

  37. Calzon-McConville CJ, Rosales-Zamora MB, Segovia-Hernandez JG, Hernandez S, Rico-Ramirez V (2006) Design and optimization of thermally coupled distillation schemes for the separation of multi-component mixtures. Ind Eng Chem Res 45(2):724–732

    Article  CAS  Google Scholar 

  38. Segovia-Hernandez JG, Hernandez-Vargas EA, Marquez-Munoz JA (2007) Control properties of thermally coupled distillation sequences for different operating conditions. Comput Chem Eng 31(7):867–874

    Article  CAS  Google Scholar 

  39. Errico M, Rong B-G, Tola G, Turunen I (2008) Process intensification for the retrofit of a multicomponent distillation plant—an industrial case study. Ind Eng Chem Res 47:1975–1980

    Article  CAS  Google Scholar 

  40. Errico M, Rong B-G (2012) Modified simple column configurations for quaternary distillations. Comput Chem Eng 36:160–173

    Article  CAS  Google Scholar 

  41. Rong B-G, Kraslawski A (2002) Synthesis of thermodynamically efficient distillation schemes for multicomponent separations. In: 12th European symposium on computer aided process engineering The Hague, May 26–29, 2002, pp 319–324

    Google Scholar 

  42. Torres-Ortega CE, Errico M, Rong B-G (2015) Design and optimization of modified non-sharp column configurations for quaternary distillations. Comput Chem Eng 74:15–27

    Article  CAS  Google Scholar 

  43. Errico M, Rong B-G, Torres-Ortega CE, Segovia-Hernandez JG (2014) The importance od the sequential synthesis methodology in the optimal distillation sequences design. Comput Chem Eng 62:1–9

    Article  CAS  Google Scholar 

  44. Errico M, Pirellas P, Torres-Ortega CE, Rong B-G, Segovia-Hernandez JG (2014) A combined method for the design and optimization of intensified distillation systems. Chem Eng Process: Process Intensif 85:69–76

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Errico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Errico, M., Rong, BG. (2016). Systematic Synthesis of Intensified Distillation Systems. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_3

Download citation

Publish with us

Policies and ethics