Skip to main content
Log in

Matrix based method for synthesis of main intensified and integrated distillation sequences

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The objective of many studies in this area has involved access to a column-sequencing algorithm enabling designers and researchers alike to generate a wide range of sequences in a broad search space, and be as mathematically and as automated as possible for programing purposes and with good generality. In the present work an algorithm previously developed by the authors, called the matrix method, has been developed much further. The new version of the algorithm includes thermally coupled, thermodynamically equivalent, intensified, simultaneous heat and mass integrated and divided-wall column sequences which are of gross application and provide vast saving potential both on capital investment, operating costs and energy usage in industrial applications. To demonstrate the much wider searchable space now accessible, a three component separation has been thoroughly examined as a case study, always resulting in an integrated sequence being proposed as the optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Segovia-Hernández, A. Bonilla-Petriciolet and L. I. Salcedo- Estrada, Korean J. Chem. Eng., 23(5), 689 (2006).

    Article  Google Scholar 

  2. R.W. H. Sargent and K. Gaminibandara, Optimum Design of Plate Distillation Column. Optimization in Action, Dixon, L.W. C. Academic Press, London (1976).

    Google Scholar 

  3. R.W. H. Sargent, Comput. Chem. Eng., 22, 31 (1998).

    Article  CAS  Google Scholar 

  4. R. Agrawal, Ind. Eng. Chem. Res., 35, 1059 (1996).

    Article  CAS  Google Scholar 

  5. R. Agrawal, AIChE J., 49, 379 (2003).

    Article  CAS  Google Scholar 

  6. A.V. Giridhar and R. Agrawal, Comput. Chem. Eng., 34(1), 73 (2010).

    Article  CAS  Google Scholar 

  7. Z.T. Fidkowski, AIChE J., 52(6), 2098 (2006).

    Article  CAS  Google Scholar 

  8. J. A. Caballero and I. E. Grossmann, AIChE J., 49(11), 2864 (2003).

    Article  CAS  Google Scholar 

  9. J. A. Caballero and I. E. Grossmann, Comput. Chem. Eng., 28, 2307 (2004).

    Article  CAS  Google Scholar 

  10. J.A. Caballero and I. E. Grossmann, Ind. Eng. Chem. Res., 45, 8454 (2006).

    Article  CAS  Google Scholar 

  11. J.A. Caballero and I.E. Grossmann, Comput. Chem. Eng., 61, 118 (2014).

    Article  Google Scholar 

  12. M. Errico, B. G. Rong, G. Tola and I. Turunen, Chem. Eng. Process. Process Intensification, 48, 907 (2009).

    Article  CAS  Google Scholar 

  13. B.G. Rong and M. Errico, Chem. Eng. Process. Process Intensification, 62, 1 (2012).

    Article  CAS  Google Scholar 

  14. M. Errico, B. G. Rong, C. E. Torres-Ortega and J. G. Segovia-Hernandez, Comput. Chem. Eng., 62, 1 (2014).

    Article  CAS  Google Scholar 

  15. J. Ivakpour and N. Kasiri, Ind. Eng. Chem. Res., 48, 8635 (2009).

    Article  CAS  Google Scholar 

  16. V.H. Shah and R. Agrawal, AIChE J., 56(7), 1759 (2010).

    Article  CAS  Google Scholar 

  17. A.A. Shenvi, V. H. Shah, J. A. Zeller and R. Agrawal, AIChE J., 58(8), 2479 (2012).

    Article  CAS  Google Scholar 

  18. P. B. Shah and A.C. Kokossis, Comput. Chem. Eng., 25, 867 (2001).

    Article  CAS  Google Scholar 

  19. P. B. Shah and A.C. Kokossis, AIChE J., 48, 527 (2002).

    Article  CAS  Google Scholar 

  20. J.K. Kim and P.C. Wankat, Ind. Eng. Chem. Res., 43, 3838 (2004).

    Article  CAS  Google Scholar 

  21. B.G. Rong, A. Kraslawski and L. Nystrom, Comput. Chem. Eng., 24, 247 (2000).

    Article  CAS  Google Scholar 

  22. B.G. Rong, A. Kraslawski and L. Nystrom, Comput. Chem. Eng., 25, 807 (2001).

    Article  CAS  Google Scholar 

  23. B.G. Rong and A. Kraslawski, Ind. Eng. Chem. Res., 41, 5716 (2002).

    Article  CAS  Google Scholar 

  24. B.G. Rong and A. Kraslawski, AIChE J., 49(5), 1340 (2003).

    Article  CAS  Google Scholar 

  25. B.G. Rong, A. Kraslawski and I. Turunen, Ind. Eng. Chem. Res., 43, 5904 (2004).

    Article  CAS  Google Scholar 

  26. B.G. Rong and I. Turunen, Chem. Eng. Res. Des., 84(A12), 1095 (2006).

    Article  CAS  Google Scholar 

  27. B.G. Rong and I. Turunen, Chem. Eng. Res. Des., 84(A12), 1117 (2006).

    Article  CAS  Google Scholar 

  28. Y. H. Kim, Ind. Eng. Chem. Res., 40, 2460 (2001).

    Article  CAS  Google Scholar 

  29. Y. H. Kim, Chem. Eng. J., 89, 89 (2002).

    Article  CAS  Google Scholar 

  30. S.B. Kim, G. J. Ruiz and A. A. Linninger, Ind. Eng. Chem. Res., 49, 6499 (2010).

    Article  CAS  Google Scholar 

  31. S.B. Kim, G. J. Ruiz and A. A. Linninger, Ind. Eng. Chem. Res., 49, 8670 (2010).

    Article  CAS  Google Scholar 

  32. X. H. Wang, Y.D. Hu and Y. G. Li, Korean J. Chem. Eng., 25(3), 402 (2008).

    Article  CAS  Google Scholar 

  33. H. Yoo, M. Binns, M. J. Jang, H. Cho and J.K. Kim, Korean J. Chem. Eng., 32, Under Publication (2015).

    Google Scholar 

  34. E.C. Hohmann, M.T. Sander and H. Dunhford, Chem. Eng. Commun., 17, 273 (1982).

    Article  CAS  Google Scholar 

  35. R. Agrawal and Z.T. Fidkowski, AIChE J., 44(11), 2565 (1998).

    Article  CAS  Google Scholar 

  36. A.A. Shenvi, V. H. Shah and R. Agrawal, AIChE J., 59(1), 272 (2013).

    Article  CAS  Google Scholar 

  37. N. Asprion and G. Kaibel, Chem. Eng. Process. Process Intensification, 49, 139 (2010).

    Article  CAS  Google Scholar 

  38. N.V.D. Long and M. Lee, Korean J. Chem. Eng., 29(5), 567 (2012).

    Article  Google Scholar 

  39. L.Q. Minh, N.V.D. Long and M. Lee, Korean J. Chem. Eng., 29(11), 1500 (2012).

    Article  CAS  Google Scholar 

  40. N.V.D. Long and M. Lee, Korean J. Chem. Eng., 30(2), 286 (2013).

    Article  Google Scholar 

  41. J.D. Seader, E. J. Henley and D. K. Roper, Separation Process Principles, Chemical and Biochemical Operations, Wiley, New York, USA (2011).

    Google Scholar 

  42. J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill: United States (1988).

    Google Scholar 

  43. W.D. Seider, J.D. Seader, D.R. Lewin and S. Widagdo, Product and Process Design Principles, 3rd Ed., Wiley, Asia (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norollah Kasiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili-Garakani, A., Ivakpour, J. & Kasiri, N. Matrix based method for synthesis of main intensified and integrated distillation sequences. Korean J. Chem. Eng. 33, 1134–1152 (2016). https://doi.org/10.1007/s11814-015-0273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0273-x

Keywords

Navigation