Skip to main content
Log in

An Overview of Strategies for Selecting the Optimal Sequence of Multi-Component Distillation

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This article systematically reviews the advancements in approaches to select the optimal sequence of distillation column trains for separating multicomponent mixture into its constituents and discusses significant developments in this area. The review covers various approaches for sharp and non-sharp/sloppy separation systems, as well as different complicated distillation column designs. It also suggests future research challenges for the systematic synthesis of distillation columns and the potential to implement innovative computational techniques to obtain the optimal configuration, particularly with respect to the development of evolutionary computer based methods that can lead to the best sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aggarwal, A. and Floudas, C.A., Synthesis of general distillation sequences—nonsharp separations, Comput. Chem. Eng., 1990, vol. 14, no. 6, pp. 631–653.

    Article  CAS  Google Scholar 

  2. Aggarwal, A. and Floudas, C.A., Synthesis of heat integrated nonsharp distillation sequences, Comput. Chem. Eng., 1992, vol. 16, no. 2, pp. 89–108.

    Article  CAS  Google Scholar 

  3. Agrawal, R., Synthesis of distillation column configurations for a multicomponent separation, Ind. Eng. Chem. Res., 1996, vol. 35, no. 4, pp. 1059–1071.

    Article  CAS  Google Scholar 

  4. Aly, S., Heuristic approach for the synthesis of heat-integrated distillation sequences, Int. J. Energy Res., 1997, vol. 21, no. 14, pp. 1297–1304.

    Article  CAS  Google Scholar 

  5. Andrecovich, M.J. and Westerberg, A.W., A simple synthesis method based on utility bounding for heat integrated distillation sequences, 1985, AIChE J., vol. 31, no. 3, pp. 363–375.

    Article  CAS  Google Scholar 

  6. Andrecovich, M.J. and Westerberg, A.W., An MILP formulation for heat-integrated distillation sequence synthesis, AIChE J., 1985, vol. 31, no. 9, pp. 1461–1474.

    Article  CAS  Google Scholar 

  7. Bellman, R.E., The Theory of Dynamic Programming, Santa Monica, Cal.: Rand Corporation, 1954.

    Book  Google Scholar 

  8. Bek-Pedersen, E. and Gani, R., Design and synthesis of distillation systems using a driving-force-based approach. Chem. Eng. Process., 2004, vol. 43, no. 3, pp. 251–262.

    Article  CAS  Google Scholar 

  9. Biegler, L.T., Grossmann, I.E., and Westerberg, A.W., Systematic Methods of Chemical Process Design, Upper Saddle River, N.J.: Prentice Hall PTR, 1997.

    Google Scholar 

  10. Caballero, J.A. and Grossmann, I.E., Design of distillation sequences: From conventional to fully thermally coupled distillation systems, Comput. Chem. Eng., 2004, vol. 28, no. 11, pp. 2307–2329.

    Article  CAS  Google Scholar 

  11. Caballero, J.A. and Grossmann, I.E., Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach, Comput. Chem. Eng., 2014, vol. 61, pp. 118–135.

    Article  Google Scholar 

  12. Carlberg, N.A. and Westerberg, A.W., Temperature-heat diagrams for complex columns: 3. Underwood’s method for the Petlyuk configuration, Ind. Eng. Chem. Res., 1989, vol. 28, no. 9, pp. 1386–1397.

    Article  CAS  Google Scholar 

  13. Charles, D.D., Fundamentals of Multicomponent Distillation, New York: McGraw-Hill, 1997.

    Google Scholar 

  14. Chiotti, O.J., Salomone, H.E., and Iribarren, O.A., Selection of multicomponent batch distillation sequences, Chem. Eng. Commun., 1993, vol. 119, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  15. Cheng, S.H. and Liu, Y.A., Studies in chemical process design and synthesis: 8. A simple heuristic method for systematic synthesis of initial sequences for sloppy multicomponent separations, Ind. Eng. Chem. Res., 1988, vol. 27, no. 12, pp. 2304–2322.

    Article  CAS  Google Scholar 

  16. Donghui, L., Changfang, Y., and Guilian, L., Identification of the optimal distillation sequence based on the integration of reaction–distillation–recycle system, Chem. Eng. Trans., 2019, vol. 76, pp. 1237–1242.

    Google Scholar 

  17. Douglas, J.M., Conceptual Design of Chemical Processes, New York, McGraw-Hill, 1988.

    Google Scholar 

  18. Fei, W., Luo, Y., and Yuan, X., A formulation methodology for multicomponent distillation sequences based on stochastic optimization, Chin. J. Chem. Eng., 2016 vol. 24, no. 9, pp. 1229–1235.

    Article  Google Scholar 

  19. Floudas, C.A. and Paules, G.E., A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences, Comput. Chem. Eng., 1988, vol. 12, no. 6, pp. 531–546.

    Article  CAS  Google Scholar 

  20. Floudas, C.A. and Anastasiadis, S.H., Synthesis of distillation sequences with several multicomponent feed and product streams, Chem. Eng. Sci., 1988, vol. 43, no. 9, pp. 2407–2419.

    Article  CAS  Google Scholar 

  21. Flowers, T.L., Harrison, B.K., and Niccolai, M.J., Automated synthesis of distillation sequences using fuzzy logic and simulation, AIChE J., 1994, vol. 40, no. 8, pp. 1341–1348.

    Article  CAS  Google Scholar 

  22. Freshwater, D.C. and Henry, B.D., Optimal configuration of multicomponent distillation systems, in 76th National AIChE Meeting, Tulsa, OK, March 7–14, 1974.

  23. Freshwater, D.C. and Henry, B.D., The optimal configuration of multicomponent distillation trains, Chem. Eng., 1975, vol. 301, pp. 533–536.

    Google Scholar 

  24. Freshwater, D.C. and Ziogou, E., Reducing energy requirements in unit operations, Chem. Eng. J., 1976, vol. 11, no. 3, pp. 215–222.

    Article  CAS  Google Scholar 

  25. Gadkari, P.B. and Govind, R., Analytical screening criterion for sequencing of distillation columns. Comput. Chem. Eng., 1988, vol. 12, no. 12, pp. 1199–1213.

    Article  CAS  Google Scholar 

  26. Gomez-Munoz, A. and Seader, J.D., Synthesis of distillation trains by thermodynamic analysis, Comput. Chem. Eng., 1985, vol. 9, no. 4, pp. 311–341.

    Article  CAS  Google Scholar 

  27. Gooty, R.T., Mobed, P., Tawarmalani, M., and Agrawal, R., Optimal multicomponent distillation column sequencing: Software and case studies, in 13th International Symposium on Process Systems Engineering—PSE 2018, July 1–5, 2018, Eden, M., Towler, G., and Ierapetritou, M., Eds., Amsterdam: Elsevier, 2018.

  28. Glinos, K. and Malone, M.F., Optimality regions for complex column alternatives in distillation systems, Chem. Eng. Res. Des., 1988, vol. 66, no. 3, pp. 229–240.

    CAS  Google Scholar 

  29. Approximate multicomponent distillation methods, Chapter 13.5 of Perry’s Chemical Engineers’ Handbook, Green, D.W. and Southard, M.Z., Eds., New York: McGraw-Hill Education, 2019.

  30. Harbert, V.D., Which tower goes where?, Pet. Refin., 1957, vol. 36, no. 3, pp. 169–174.

    Google Scholar 

  31. Harwardt, A., Kossack, S., and Marquardt, W., Optimal column sequencing for multicomponent mixtures, in 18th European Symposium on Computer Aided Process Engineering—ESCAPE 18, Braunschweig, B. and Joulia, X., Eds., New York: Elsevier, 2008, pp. 91–96.

  32. Heaven, D.L., Optimum sequencing of distillation columns in multicomponent fractionation, MS Thesis, Berkeley, Cal.: University of California Berkeley, 1969.

  33. Hendry, J.E. and Hughes, R.R., Generating separation process flow sheets, Chem. Eng. Prog., 1972, vol. 68, no. 6, p. 69.

    Google Scholar 

  34. Hendry, J.E., Rudd, D.F., and Seader, J.D., Synthesis in the design of chemical processes, AIChE J., 1973, vol. 19, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

  35. Henry, B.D., Preprints of Papers, Fourth National Conference on Chemical Engineering, Adelaide, S.A., Australia, August 25–26, 1976, Sydney, Australia: Institution of Engineers, 1976, pp. 46–50.

  36. Hewitt, G.F., Quarini, G L., and Morrell, M.S., More efficient distillation, Chem. Eng., 1999. vol. 690, pp. 16–18.

    Google Scholar 

  37. Hlavacek, V., Journal Review: Synthesis in the design of chemical processes, Comput. Chem. Eng., 1977, vol. 2, pp. 67–75.

    Article  Google Scholar 

  38. Hohmann, E.C., Optimum networks for heat exchange, PhD Thesis, Los Angeles, Cal.: University of South California, 1971.

  39. Holland, C.D., Fundamentals of Multicomponent Distillation, New York: McGraw-Hill, 1981.

    Google Scholar 

  40. Humphrey, J.L. and Keller, I.I., Separation Process Technology, New York: McGraw-Hill, 1997.

    Google Scholar 

  41. Humphrey, J.L., Associates, and Siebert, A., Separation technologies; An opportunity for energy savings, Chem. Eng. Prog., 1992, vol. 88, pp. 32–41.

    CAS  Google Scholar 

  42. Ichikawa, A. and Fan, L.T., Optimal synthesis of process systems: Necessary condition for optimal system and its use in synthesis of systems, Chem. Eng. Sci., 1973, vol. 28, no. 2, pp. 357–373.

    Article  CAS  Google Scholar 

  43. Isla, M.A. and Cerda, J., A general algorithmic approach to the optimal synthesis of energy—efficient distillation train designs, Chem. Eng. Commun., 1987, vol. 54, nos. 1–6, pp. 353–379.

    Article  CAS  Google Scholar 

  44. Jain, S., Smith, R., and Kim, J., Synthesis of heat-integrated distillation sequence systems, J. Taiwan Inst. Chem. Eng., 2012, vol. 43, no. 4, pp. 525–534.

    Article  CAS  Google Scholar 

  45. Jobson, M., Short-cut evaluation of distillation sequences, Comput. Chem. Eng., 1997, vol. 21, nos. 1–2, Suppl., pp. S553–S557.

    Article  CAS  Google Scholar 

  46. Kattan, M.K., and Douglas, P.L., A new approach to thermal integration of distillation sequences, Can. J. Chem. Eng., 1986, vol. 64, pp. 162–170.

    Article  Google Scholar 

  47. King, C.J., Separation Processes, New York: McGraw-Hill, 1971.

    Google Scholar 

  48. Kister, H.Z., Distillation Design, New York: McGraw-Hill, 1992.

    Google Scholar 

  49. Kong, L. and Maravelias, C.T., Expanding the scope of distillation network synthesis using superstructure-based methods, Comput. Chem. Eng., 2020, vol. 133, Article 106650.

    Article  CAS  Google Scholar 

  50. Lee, K.F., Masso, A.H., and Rudd, D.F., Branch and bound integrated process synthesis of designs, Ind. Eng. Chem. Fundam., 1970, vol. 9, no. 1, pp. 48–58.

    Article  CAS  Google Scholar 

  51. Leeson, D., The preliminary design of heat-integrated multicomponent distillation sequences through generation of flow sheet superstructures. PhD Thesis, London: Imperial College London, 2018.

  52. Linnhoff, B., Mason, D.R., and Wardle, I., Understanding heat exchanger networks, Comput. Chem. Eng., 1979, vol. 3, nos. 1–4, pp. 295–302.

    Article  Google Scholar 

  53. Linnhoff, B., Dunford, H., and Smith, R., Heat integration of distillation columns into overall processes, Chem. Eng. Sci., 1983, vol. 38, no. 8, pp. 1175–1188.

    Article  CAS  Google Scholar 

  54. Lockhart, F.J., Multi-column distillation of natural gasoline, Pet. Refin., 1947, vol. 26, pp. 104–108.

    Google Scholar 

  55. Maikov, V.P., Vilkov, G.G., and Galtsov, A.V., Optimum design of multicolumn fractionating plants from the thermoeconomic standpoint, Int. Chem. Eng., 1972, vol. 12, p. 426.

    Google Scholar 

  56. Malek, N. and Glavič, P., Theoretical bases of separation sequence heuristics, Comput. Chem. Eng., 1994, vol. 18, Suppl., pp. S143–S147.

    Article  Google Scholar 

  57. Morari, M. and Faith, D.C., The synthesis of distillation trains with heat integration, AIChE J., 1980, vol. 26, no. 6, pp. 916–928.

    Article  CAS  Google Scholar 

  58. Nadgir, V.M. and Liu, Y.A., Studies in chemical process design and synthesis, Part V: A simple heuristic method for systematic synthesis of initial sequences for multicomponent separations, AIChE J., 1983, vol. 29, no. 6, pp. 926–934.

    Article  CAS  Google Scholar 

  59. Naka, Y., Terashita, M., and Takamatsu, T., A thermodynamic approach to multicomponent distillation systems synthesis, AIChE J., 1982, vol. 28, no. 5, pp. 812–820.

    Article  CAS  Google Scholar 

  60. Nallasivam, U., Shah, V.H., Shenvi, A.A., Huff, J., Tawarmalani, M., and Agrawal, R., Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm, AIChE J., 2016, vol. 62, no. 6, pp. 2071–2086.

    Article  CAS  Google Scholar 

  61. Nath, R., and Motard, R.L., Evolutionary synthesis of separation processes, AIChE J., 1981, vol. 27, no. 4, pp. 578–587.

    Article  CAS  Google Scholar 

  62. Nath, R., Bamopoulos, G., and Motard, R.L., Heuristic synthesis of nonsharp separation sequences, AIChE J., 1988, vol. 34, no. 5, pp. 763–780.

    Article  Google Scholar 

  63. Nath, R., Studies in the synthesis of separation processes, PhD Thesis, Houston, Tex.: University of Houston, 1977.

  64. Nishimura, H., and Hiraizumi, Y., Optimal system pattern for multicomponent distillation systems, Int. Chem. Eng., 1971, vol. 11, p. 188.

    Google Scholar 

  65. Nishida, N., Stephanopoulos, G., and Westerberg, A.W., A review of process synthesis, AIChE J., 1981, vol. 27, no. 3, pp. 321–351.

    Article  CAS  Google Scholar 

  66. Papoulias, S.A., Studies in the optimal synthesis of chemical processing and energy systems, PhD Thesis, Pittsburgh, Pa.: Carnegie Mellon University, 1982.

  67. Petlyuk, F.B., Platonov, V.M., and Slavinskii, D.M., Thermodynamically optimal method for separating multicomponent mixtures, Int. Chem. Eng., 1965, vol. 5, p. 555.

    Google Scholar 

  68. Petlyuk, F.B., Platonov, V.M., and Avetyan, V.S., Optimum arrangements in the fractionating distillation of multicomponent mixtures, Khim. Prom-st., 1966, vol. 42, no. 11, p. 865.

    CAS  Google Scholar 

  69. Petlyuk, F.B., Distillation Theory and Its Application to Optimal Design of Separation Units, Cambridge, UK: Cambridge University Press, 2004.

    Book  Google Scholar 

  70. Papoulias, S.A. and Grossmann, I.E., A structural optimization approach in process synthesis, Part I: Utility systems, Comput. Chem. Eng., 1983, vol. 7, no. 6, pp. 695–706.

    Article  CAS  Google Scholar 

  71. Piumsomboon, P. and Thitiprayoonwongse, U., Optimal distillation sequencing using a genetic algorithm, J. Sci. Res. Chulalongkorn Univ., 2001, vol. 26, no. 1, pp. 25–34.

    Google Scholar 

  72. Porter, K.E., and Momoh, S.O., Finding the optimum sequence of distillation columns—An equation to replace the “rules of thumb” (heuristics), Chem. Eng. J., 1991, vol. 46, no. 3, pp. 97–108.

    Article  CAS  Google Scholar 

  73. Powers, G.J., Heuristic synthesis in process development, Chem. Eng. Prog., 1972, vol. 68, no. 8, pp. 88–95.

    CAS  Google Scholar 

  74. Rathore, R.N.S., Van Wormer, K.A., and Powers, G.J., Synthesis strategies for multicomponent separation systems with energy integration, AIChE J., 1974, vol. 20, no. 3, pp. 491–502.

    Article  CAS  Google Scholar 

  75. Reza, A.P., and Saeed, S. (2017). Energy and economic optimization of distillation sequencing, Environ. Energy Econ. Res., vol. 1, no. 1, pp. 125–140.

    Google Scholar 

  76. Rod, V. and Marek, J., Separation sequences in multicomponent rectification, Collect. Czech. Chem. Commun., 1959, vol. 24, pp. 3240–3248.

    Article  CAS  Google Scholar 

  77. Rodrigo B., F.R. and Seader, J.D., Synthesis of separation sequences by ordered branch search, AIChE J., 1975, vol. 21, no. 5, pp. 885–894.

    Article  Google Scholar 

  78. Rong, B.G., Kraslawski, A., and Nyström, L., Design and synthesis of multicomponent thermally coupled distillation flowsheet, Comput. Chem. Eng., 2001, vol. 25, nos. 4–6, pp. 807–820.

    Article  CAS  Google Scholar 

  79. Rudd, D.F., Powers, G.J., and Siirola, J.J., Process Synthesis, Englewood Cliffs, N.J.: Prentice-Hall, 1973.

    Google Scholar 

  80. Sargent, R.W.H. and Gaminibandara, K., Optimum design of plate distillation columns, in Optimization in Action, Dixon, L.C.W., Ed., New York: Academic, 1976, pp. 267–314.

    Google Scholar 

  81. Shah, V.H., and Agrawal, R., A matrix method for multicomponent distillation sequences, AIChE J., vol. 56, no. 7, pp. 1759–1775.

  82. Seader, J.D. and Westerberg, A.W., A combined heuristic and evolutionary strategy for synthesis of simple separation sequences, AIChE J., 2010, vol. 23, no. 6, pp. 951–954.

    Article  Google Scholar 

  83. Serafimov, L.A., Mozzhukhin, A.S., and Naumenkova, L.B., Determination of the number of variants of flow sheets for the rectification of n-component zeotropic mixtures, Teor. Osn. Khim. Teknol., 1993, vol. 27, no. 3, pp. 292–295.

    CAS  Google Scholar 

  84. Serafimov, L.A., Chelyuskina, T.V., and Mavletkulova, P.O., Finding optimal multicomponent distillation flowsheets, Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, pp. 41–49.

    Article  CAS  Google Scholar 

  85. Seuranen, T., Hurme, M., and Pajula, E., Synthesis of separation processes by case-based reasoning, Comput. Chem. Eng., 2005, vol. 29, no. 6, pp. 1473–1482.

    Article  CAS  Google Scholar 

  86. Sgouros, N.M., Using qualitative, numerical and heuristic knowledge to support innovative design, in The 7th International Workshop on Qualitative Reasoning about Physical Systems, Orcas Island, WA, USA, Menlo Park, Cal., AAAI Press, 1993, pp. 204–211.

  87. Sgouros, N.M., Interaction between physical and design knowledge in design from physical principles, Eng. Appl. Artif. Intell., 1998, vol. 11, no. 4, pp. 449–459.

    Article  Google Scholar 

  88. Sholl, D.S. and Lively, R.P., Seven chemical separations to change the world, Nature, 2016, vol. 532, no. 7600, pp. 435–437.

    Article  Google Scholar 

  89. Smith, R., Chemical Process Design and Integration, New York: McGraw-Hill, 1995.

    Google Scholar 

  90. Sophos, A., Stephanopoulos, G., and Morari, M., Synthesis of optimum distillation sequences with heat integration schemes, in 71st Annual AIChE Meeting, Miami, Fla., 1978, paper 42d.

  91. Stephanopoulos, G., Synthesis of process flow sheets: An adventure in heuristic design or a utopia of mathematical programming? in Foundations of Computer-Aided Chemical Process Design, Mah, R.S.H. and Seider, W.D., Eds., New York: Engineering Foundation, 1981, vol. 2, p. 439.

    Google Scholar 

  92. Stupin, W.J. and Lockhart, F.J., Thermally coupled distillation—a case history, Chem. Eng. Prog., 1972, vol. 68, pp. 71–72.

    Google Scholar 

  93. Tamuzi, A., Kasiri, N., and Khalili-Garakani, A., Design and optimization of distillation column sequencing for NGL fractionation processes, J. Nat. Gas Sci. Eng., 2020, vol. 76, pp. 1–13.

    Article  Google Scholar 

  94. Tedder, D.W. and Rudd, D.F., Parametric studies in industrial distillation, Part I: Design comparisons, AIChE J., 1978, vol. 24, no. 2, pp. 303–315.

    Article  CAS  Google Scholar 

  95. Tedder, D.W. and Rudd, D.F., Parametric studies in industrial distillation, Part II: Heuristic optimization, AIChE J., 1978, vol. 24, no. 2, pp. 316–323.

    Article  CAS  Google Scholar 

  96. Tedder, D.W. and Rudd, D.F., Parametric studies in industrial distillation, Part III: Design methods and their evaluation, AIChE J., 1978, vol. 24, no. 2, pp. 323–334.

    Article  CAS  Google Scholar 

  97. Thompson, R.W. and King, C.J., Systematic synthesis of separation schemes, AIChE J., 1972, vol. 18, no. 5, pp. 941–948.

    Article  CAS  Google Scholar 

  98. Tsirlin, A., Sukin, I., and Balunov, A., Selection of optimum separation sequence for multicomponent distillation, ChemEngineering, 2019, vol. 3, no. 69, pp. 1–11.

    Article  Google Scholar 

  99. Wagler, R.M. and Douglas, P.L., A method for the design of flexible distillation sequences, Can. J. Chem. Eng., 1988, vol. 66, no. 4, pp. 579–590.

    Article  CAS  Google Scholar 

  100. Waltermann, T. and Skiborowski, M., Efficient optimization-based design of energy-integrated distillation processes, Comput. Chem. Eng., 2019, vol. 129, pp. 1–16.

    Article  Google Scholar 

  101. Wahyu, H., The synthesis of optimal multi-component distillation separation sequences using the A* method, ME Thesis, Sydney, N. S. W., Australia: University of NSW, 1990.

  102. Wahyu, H., Wood, R.M., O’Neill, B.K., and Roach, J.R., Finding the optimum sequence of distillation columns using THEA* search procedure, Eng. Optim., 1993, vol. 21, no. 1, pp. 51–61.

    Article  Google Scholar 

  103. Wang, X., Du, Z., Zhang, Y., Wang, J., Wang, J., and Sun, W., Optimization of distillation sequences with nonsharp separation columns, Processes, 2019, vol. 7, no. 6, pp. 1–16.

    CAS  Google Scholar 

  104. Wehe, R.R. and Westerberg, A.W., A bounding procedure for the minimum number of columns in nonsharp distillation sequences, Chem. Eng. Sci., 1990, vol. 45, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  105. Westerberg, A.W., and Stephanopoulos, G., Studies in process synthesis—I: Branch and bound strategy with list techniques for the synthesis of separation schemes, Chem. Eng. Sci., 1975, vol. 30, no. 8, pp. 963–972.

    Article  CAS  Google Scholar 

  106. Westerberg, A.W., A review of process synthesis, in Computer Applications to Chemical Engineering: Process Design and Simulation, Squires, R.G. and Reklaitis, G.V., Eds., ACS Symposium Series, Washington, D.C.: American Chemical Society, 1980, vol. 124, pp. 53–87.

  107. Westerberg, A.W., A review of the synthesis of distillation based separation systems, in 25th CONICET Anniversary International Conference on New Developments Toward Technologies with Low Energy Requirements, INTEC, Santa Fe, Argentina, August 1983.

  108. Westerberg, A.W., The synthesis of distillation-based separation systems, Comput. Chem. Eng., 1985, vol. 9, no. 5, pp. 421–429.

    Article  CAS  Google Scholar 

  109. Westerberg, A.W. and Andrecovich, M.J., Utility bounds for non-constant QΔT for heat integrated distillation sequence synthesis, AIChE J., 1985, vol. 31, no. 9, pp. 1475–1479.

    Article  CAS  Google Scholar 

  110. Ye, H., Zou, X., Zhu, W., Yang, Y., Dong, H., and Bi, M., Synthesis framework for distillation sequence with sidestream columns: Application in reaction–separation–recycle system, Chem. Eng. Res. Des., 2021, vol. 166, pp. 172–190.

    Article  CAS  Google Scholar 

  111. Zou, X., Cui, Y., Dong, H., Wang, J., and Grossmann, I. E., Optimal design of complex distillation system for multicomponent zeotropic separations, Chem. Eng. Sci., 2012, vol. 75, pp. 133–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashant A. Giri or Yogesh S. Mahajan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, P.A., Mahajan, Y.S. An Overview of Strategies for Selecting the Optimal Sequence of Multi-Component Distillation. Theor Found Chem Eng 56, 1247–1260 (2022). https://doi.org/10.1134/S0040579522060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522060057

Keywords:

Navigation