Skip to main content

Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts

Nonmethylotrophic and Methylotrophic Yeasts

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Abstract

Protein complexes can be produced in multimilligram quantities using nonmethylotrophic and methylotrophic yeasts such as Saccharomyces cerevisiae and Komagataella (Pichia) pastoris. Yeasts have distinct advantages as hosts for recombinant protein production owing to their cost efficiency, ease of cultivation and genetic manipulation, fast growth rates, capacity to introduce post-translational modifications, and high protein productivity (yield) of correctly folded protein products. Despite those advantages, yeasts have surprisingly lagged behind other eukaryotic hosts in their use for the production of multisubunit complexes. As our knowledge of the metabolic and genomic bottlenecks that yeast microorganisms face when overexpressing foreign proteins expands, new possibilities emerge for successfully engineering yeasts as superb expression hosts. In this chapter, we describe the current state of the art and discuss future possibilities for the development of yeast-based systems for the production of protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandez FJ, Vega MC (2013) Technologies to keep an eye on: alternative hosts for protein production in structural biology. Curr Opin Struct Biol 23(3):365–373

    Article  CAS  PubMed  Google Scholar 

  2. Barnett JA, Barnett L (2011) Yeast research: a historical overview. ASM Press, Washington, DC

    Book  Google Scholar 

  3. Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197(1):33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Resnick MA, Cox BS (2000) Yeast as an honorary mammal. Mutat Res 451(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  5. Bawa Z, Bland CE, Bonander N, Bora N, Cartwright SP, Clare M, Conner MT, Darby RA, Dilworth MV, Holmes WJ, Jamshad M, Routledge SJ, Gross SR, Bill RM (2011) Understanding the yeast host cell response to recombinant membrane protein production. Biochem Soc Trans 39(3):719–723

    Article  CAS  PubMed  Google Scholar 

  6. Bonander N, Bill RM (2012) Optimising yeast as a host for recombinant protein production (review). Methods Mol Biol 866:1–9

    Article  CAS  PubMed  Google Scholar 

  7. Barnett JA (2003) A history of research on yeasts 5: the fermentation pathway. Yeast 20(6):509–543

    Article  CAS  PubMed  Google Scholar 

  8. Barnett JA (2003) A history of research on yeasts 6: the main respiratory pathway. Yeast 20(12):1015–1044

    Article  CAS  PubMed  Google Scholar 

  9. Ashe MP, Bill RM (2011) Mapping the yeast host cell response to recombinant membrane protein production: relieving the biological bottlenecks. Biotechnol J 6(6):707–714

    Article  CAS  PubMed  Google Scholar 

  10. Bill RM (2014) Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Front Microbiol 5:85

    Article  PubMed  PubMed Central  Google Scholar 

  11. Verduyn C, Zomerdijk TL, van Dijken J, Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19(3):181–185

    Article  CAS  Google Scholar 

  12. Darby RA, Cartwright SP, Dilworth MV, Bill RM (2012) Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris (review). Methods Mol Biol 866:11–23

    Article  CAS  PubMed  Google Scholar 

  13. Celik E, Calik P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30(5):1108–1118

    Article  CAS  PubMed  Google Scholar 

  14. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8(6):423–488

    Article  CAS  PubMed  Google Scholar 

  15. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3):218–229

    Article  CAS  PubMed  Google Scholar 

  16. Fang F, Salmon K, Shen MW, Aeling KA, Ito E, Irwin B, Tran UP, Hatfield GW, Da Silva NA, Sandmeyer S (2011) A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 28(2):123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geymonat M, Spanos A, Sedgwick S (2009) Production of mitotic regulators using an autoselection system for protein expression in budding yeast. Methods Mol Biol 545:63–80

    Article  CAS  PubMed  Google Scholar 

  18. Geymonat M, Spanos A, Sedgwick SG (2007) A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression. Gene 399(2):120–128

    Article  CAS  PubMed  Google Scholar 

  19. Maury J, Asadollahi MA, Moller K, Schalk M, Clark A, Formenti LR, Nielsen J (2008) Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae. FEBS Lett 582(29):4032–4038

    Article  CAS  PubMed  Google Scholar 

  20. Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964

    Article  CAS  PubMed  Google Scholar 

  21. Shen MW, Fang F, Sandmeyer S, Da Silva NA (2012) Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 29(12):495–503

    Article  CAS  PubMed  Google Scholar 

  22. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA 3rd (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105(51):20404–20409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G, Richardson SM, Dymond JS, Kuang Z, Scheifele LZ, Cooper EM, Cai Y, Zeller K, Agmon N, Han JS, Hadjithomas M, Tullman J, Caravelli K, Cirelli K, Guo Z, London V, Yeluru A, Murugan S, Kandavelou K, Agier N, Fischer G, Yang K, Martin JA, Bilgel M, Bohutski P, Boulier KM, Capaldo BJ, Chang J, Charoen K, Choi WJ, Deng P, DiCarlo JE, Doong J, Dunn J, Feinberg JI, Fernandez C, Floria CE, Gladowski D, Hadidi P, Ishizuka I, Jabbari J, Lau CY, Lee PA, Li S, Lin D, Linder ME, Ling J, Liu J, Liu J, London M, Ma H, Mao J, McDade JE, McMillan A, Moore AM, Oh WC, Ouyang Y, Patel R, Paul M, Paulsen LC, Qiu J, Rhee A, Rubashkin MG, Soh IY, Sotuyo NE, Srinivas V, Suarez A, Wong A, Wong R, Xie WR, Xu Y, Yu AT, Koszul R, Bader JS, Boeke JD, Chandrasegaran S (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344(6179):55–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256

    Article  CAS  PubMed  Google Scholar 

  25. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37(2):e16

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wingler LM, Cornish VW (2011) Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci U S A 108(37):15135–15140

    Article  PubMed  PubMed Central  Google Scholar 

  27. Koschubs T, Lorenzen K, Baumli S, Sandstrom S, Heck AJ, Cramer P (2010) Preparation and topology of the mediator middle module. Nucleic Acids Res 38(10):3186–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962

    Article  CAS  PubMed  Google Scholar 

  29. van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6(3):381–392

    Article  PubMed  Google Scholar 

  30. Morlino GB, Tizzani L, Fleer R, Frontali L, Bianchi MM (1999) Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis. Appl Environ Microbiol 65(11):4808–4813

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24(1–2):17–26

    Article  Google Scholar 

  32. Becerra M, Baroli B, Fadda AM, Blanco Méndez J, González Siso MI (2001) Lactose bioconversion by calcium-alginate immobilization of Kluyveromyces lactis cells. Enzym Microb Technol 29(8–9):506–512

    Article  CAS  Google Scholar 

  33. Colussi PA, Taron CH (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71(11):7092–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Read JD, Colussi PA, Ganatra MB, Taron CH (2007) Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Appl Environ Microbiol 73(16):5088–5096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoshida H, Murakami N, Suzuki A, Tamura R, Asakawa J, Abdel-Banat BM, Nonklang S, Nakamura M, Akada R (2014) Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 31(1):29–46

    Article  CAS  PubMed  Google Scholar 

  36. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130(2):114–123

    Article  CAS  PubMed  Google Scholar 

  37. Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008) Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77(6):1329–1335

    Article  CAS  PubMed  Google Scholar 

  38. Falcone C, Saliola M, Chen XJ, Frontali L, Fukuhara H (1986) Analysis of a 1.6-micron circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15(3):248–252

    Article  CAS  PubMed  Google Scholar 

  39. Madzak C, Beckerich J-M (2013) Heterologous protein expression and secretion in Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica, vol 25, Microbiology Monographs. Springer, Berlin, pp 1–76

    Chapter  Google Scholar 

  40. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313–338

    Chapter  Google Scholar 

  41. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430(6995):35–44

    Article  PubMed  Google Scholar 

  42. Dominguez A, Ferminan E, Sanchez M, Gonzalez FJ, Perez-Campo FM, Garcia S, Herrero AB, San Vicente A, Cabello J, Prado M, Iglesias FJ, Choupina A, Burguillo FJ, Fernandez-Lago L, Lopez MC (1998) Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol 1(2):131–142

    CAS  PubMed  Google Scholar 

  43. Tharaud C, Ribet AM, Costes C, Gaillardin C (1992) Secretion of human blood coagulation factor XIIIa by the yeast Yarrowia lipolytica. Gene 121(1):111–119

    Article  CAS  PubMed  Google Scholar 

  44. Franke AE, Kaczmarek FS, Eisenhard ME, Geoghegan KF, Danley DE, DeZeeuw JR, O’Donnell MM, Gollaher MG, Davidow LS (1988) Expression and secretion of bovine prochymosin in Yarrowia lipolytica. Dev Ind Microbiol 29:43–57

    CAS  Google Scholar 

  45. Davidow LS, Franke AE, DeZeeuw JR (1985) New Yarrowia lipolytica transformants used for expression and secretion of heterologous proteins especially prorennin and human anaphylatoxin C5a. USPTO Patent US4937189A

    Google Scholar 

  46. Madzak C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109(1–2):63–81

    Article  CAS  PubMed  Google Scholar 

  47. Chuang LT, Chen DC, Nicaud JM, Madzak C, Chen YH, Huang YS (2010) Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol 27(4):277–282

    Article  CAS  Google Scholar 

  48. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spohner SC, Muller H, Quitmann H, Czermak P (2015) Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 202:118–134

    Article  CAS  PubMed  Google Scholar 

  50. Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Factories 5:17

    Article  Google Scholar 

  51. Jacob D, Ruffie C, Dubois M, Combredet C, Amino R, Formaglio P, Gorgette O, Pehau-Arnaudet G, Guery C, Puijalon O, Barale JC, Menard R, Tangy F, Sala M (2014) Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens. PLoS ONE 9(1):e86658

    Article  PubMed  PubMed Central  Google Scholar 

  52. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18(2):119–138

    Article  CAS  PubMed  Google Scholar 

  53. Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 831:19–36

    Article  CAS  PubMed  Google Scholar 

  54. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    Article  CAS  PubMed  Google Scholar 

  55. Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A (2012) Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microb Cell Factories 11:22

    Article  CAS  Google Scholar 

  56. Resina D, Maurer M, Cos O, Arnau C, Carnicer M, Marx H, Gasser B, Valero F, Mattanovich D, Ferrer P (2009) Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. Nat Biotechnol 25(6):396–403

    CAS  Google Scholar 

  57. Shen S, Sulter G, Jeffries TW, Cregg JM (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216(1):93–102

    Article  CAS  PubMed  Google Scholar 

  58. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186(1):37–44

    Article  CAS  PubMed  Google Scholar 

  59. Menendez J, Valdes I, Cabrera N (2003) The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast 20(13):1097–1108

    Article  CAS  PubMed  Google Scholar 

  60. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

    Article  CAS  PubMed  Google Scholar 

  61. Nett JH, Cook WJ, Chen MT, Davidson RC, Bobrowicz P, Kett W, Brevnova E, Potgieter TI, Mellon MT, Prinz B, Choi BK, Zha D, Burnina I, Bukowski JT, Du M, Wildt S, Hamilton SR (2013) Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family. PLoS ONE 8(7):e68325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14(9):757–766

    Article  CAS  PubMed  Google Scholar 

  63. Wu S, Letchworth GJ (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. BioTech 36(1):152–154

    CAS  Google Scholar 

  64. Shen Q, Wu M, Wang HB, Naranmandura H, Chen SQ (2012) The effect of gene copy number and co-expression of chaperone on production of albumin fusion proteins in Pichia pastoris. Appl Microbiol Biotechnol 96(3):763–772

    Article  CAS  PubMed  Google Scholar 

  65. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89(1):55–61

    Article  CAS  PubMed  Google Scholar 

  66. Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. BioTech 12(2):181–184

    Article  CAS  Google Scholar 

  67. Abad S, Kitz K, Hormann A, Schreiner U, Hartner FS, Glieder A (2010) Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnol J 5(4):413–420

    Article  CAS  PubMed  Google Scholar 

  68. Lin-Cereghino GP, Stark CM, Kim D, Chang J, Shaheen N, Poerwanto H, Agari K, Moua P, Low LK, Tran N, Huang AD, Nattestad M, Oshiro KT, Chang JW, Chavan A, Tsai JW, Lin-Cereghino J (2013) The effect of alpha-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris. Gene 519(2):311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heimo H, Palmu K, Suominen I (1997) Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain. Protein Expr Purif 10(1):70–79

    Article  CAS  PubMed  Google Scholar 

  70. Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL (1999) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38(43):14138–14145

    Article  CAS  PubMed  Google Scholar 

  71. Boze H, Laborde C, Chemardin P, Richard F, Venturin C, Combarnous Y, Moulin G (2001) High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris. Process Biochem 36:907–913

    Article  CAS  Google Scholar 

  72. Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:141

    Article  PubMed  PubMed Central  Google Scholar 

  73. Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci U S A 103(10):3627–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–382

    Article  CAS  PubMed  Google Scholar 

  75. Singh S, Zhang M, Bertheleme N, Strange PG, Byrne B (2012) Purification of the human G protein-coupled receptor adenosine A(2a)R in a stable and functional form expressed in Pichia pastoris. Curr Protoc Protein Sci. Chapter 29:Unit 29.24

    Google Scholar 

  76. Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610(1):11–22

    Article  CAS  PubMed  Google Scholar 

  77. Hirz M, Richter G, Leitner E, Wriessnegger T, Pichler H (2013) A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na, K-ATPase alpha3beta1 isoform. Appl Microbiol Biotechnol 97(21):9465–9478

    Article  CAS  PubMed  Google Scholar 

  78. Zhou H, Chen Z, Chen H, Li S, Huang B, Bi R (2007) Co-expression and purification of recombinant human insulin-like growth factor II and insulin-like growth factor binding protein-6 in Pichia pastoris yeast. Protein Pept Lett 14(9):876–880

    Article  CAS  PubMed  Google Scholar 

  79. Jamshad M, Rajesh S, Stamataki Z, McKeating JA, Dafforn T, Overduin M, Bill RM (2008) Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expr Purif 57(2):206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bonander N, Jamshad M, Oberthur D, Clare M, Barwell J, Hu K, Farquhar MJ, Stamataki Z, Harris HJ, Dierks K, Dafforn TR, Betzel C, McKeating JA, Bill RM (2013) Production, purification and characterization of recombinant, full-length human claudin-1. PLoS ONE 8(5):e64517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54(6):741–750

    Article  CAS  PubMed  Google Scholar 

  82. Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AW, van Loon AP (1999) An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63(3):373–381

    Article  CAS  PubMed  Google Scholar 

  83. Amuel C, Gellissen G, Hollenberg CP, Suckow M (2000) Analysis of heat shock promoters in Hansenula polymorpha: the TPS1 promoter, a novel element for heterologous gene expression. Biotechnol Bioprocess Eng 5:247–252

    Article  CAS  Google Scholar 

  84. Muller S, Sandal T, Kamp-Hansen P, Dalboge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis. Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14(14):1267–1283

    Article  CAS  PubMed  Google Scholar 

  85. Boer E, Steinborn G, Matros A, Mock HP, Gellissen G, Kunze G (2007) Production of interleukin-6 in Arxula adeninivorans, Hansenula polymorpha and Saccharomyces cerevisiae by applying the wide-range yeast vector (CoMed) system to simultaneous comparative assessment. FEMS Yeast Res 7(7):1181–1187

    Article  PubMed  Google Scholar 

  86. Li Y, Song H, Li J, Wang Y, Yan X, Zhao B, Zhang X, Wang S, Chen L, Qiu B, Meng S (2011) Hansenula polymorpha expressed heat shock protein gp96 exerts potent T cell activation activity as an adjuvant. J Biotechnol 151(4):343–349

    Article  CAS  PubMed  Google Scholar 

  87. Gellissen GMP, Dahlems U, Jenzelewski V, Gavagan JE, DiCosimo R, Anton DL, Janowicz ZA Recombinant (1996) Hansenula polymorpha as a biocatalyst: coexpression of the spinach glycolate oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene. Appl Environ Microbiol 46(1):46–54

    Google Scholar 

  88. Klabunde J, Diesel A, Waschk D, Gellissen G, Hollenberg CP, Suckow M (2002) Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 58(6):797–805

    Article  CAS  PubMed  Google Scholar 

  89. Gellisen G et al (2005) FEMS Yeast Res 5:1079–1096, Elsevier

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Economy and Competitiveness grant CTQ2015-66206-C2-2-R and the European Commission (Framework Programme 7) (FP7) project ComplexINC No. 279039 to M.C.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, F.J., López-Estepa, M., Querol-García, J., Vega, M.C. (2016). Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts. In: Vega, M. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-27216-0_9

Download citation

Publish with us

Policies and ethics