Skip to main content

Which Yeast Species Shall I Choose? Saccharomyces cerevisiae Versus Pichia pastoris (Review)

  • Protocol
  • First Online:
Recombinant Protein Production in Yeast

Part of the book series: Methods in Molecular Biology ((MIMB,volume 866))

Abstract

Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bill RM (2001) Yeast – a panacea for the structure-function analysis of membrane proteins? Curr Genet 40:157–171

    Article  PubMed  CAS  Google Scholar 

  2. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–567

    Article  PubMed  CAS  Google Scholar 

  3. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, de Peer YV, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  PubMed  Google Scholar 

  4. Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29

    Article  PubMed  Google Scholar 

  5. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  PubMed  CAS  Google Scholar 

  6. Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17

    Article  PubMed  Google Scholar 

  7. Jigami Y (2008) Yeast glycobiology and its application. Biosci Biotechnol Biochem 72:637–648

    Article  PubMed  CAS  Google Scholar 

  8. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414

    Article  PubMed  CAS  Google Scholar 

  9. Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris – derived proteins. Biotechnol Appl Biochem 30:193–200

    PubMed  CAS  Google Scholar 

  10. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang YW, Rios S, Bobrowicz P, Stadheim TA, Li HJ, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  PubMed  CAS  Google Scholar 

  11. Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sørensen AR, Kaarsholm NC (2002) Engineering-enhanced protein secretory expression in yeast with application to insulin. J Biol Chem 277:18245–18248

    Article  PubMed  CAS  Google Scholar 

  12. Andre FE, Safary A (1987) Summary of clinical findings on engerix-b, a genetically engineered yeast-derived Hepatitis-B vaccine. Postgrad Med J 63:169–178

    Article  PubMed  Google Scholar 

  13. Siddiqui MAA, Perry CM (2006) Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil (R)): profile report. BioDrugs 20:313–316

    Article  PubMed  Google Scholar 

  14. Siddiqui MAA, Perry CM (2006) Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil (R)). Drugs 66:1263–1271

    Article  PubMed  Google Scholar 

  15. Gasser B, Mattanovich D (2007) Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 29:201–212

    Article  PubMed  CAS  Google Scholar 

  16. Hackel BJ, Huang DG, Buboz JC, Wang XX, Shusta EV (2006) Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 23:790–797

    Article  PubMed  CAS  Google Scholar 

  17. Evans L, Hughes M, Waters J, Cameron J, Dodsworth N, Tooth D, Greenfield A, Sleep D (2010) The production, characterisation and enhanced pharmacokinetics of scFv-albumin fusions expressed in Saccharomyces cerevisiae. Protein Expr Purif 73:113–124

    Article  PubMed  CAS  Google Scholar 

  18. Frenken LGJ, van der Linden RHJ, Hermans PWJJ, Bos JW, Ruuls RC, de Geus B, Verrips CT (2000) Isolation of antigen specific Llama V-HH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21

    Article  PubMed  CAS  Google Scholar 

  19. Edqvist J, Keranen S, Penttila M, Straby KB, Knowles JKC (1991) Production of functional Igm Fab fragments by Saccharomyces cerevisiae. J Biotechnol 20:291–300

    Article  PubMed  CAS  Google Scholar 

  20. Liitti S, Matikainen MT, Scheinin M, Glumoff T, Goldman A (2001) Immunoaffinity purification and reconstitution of human alpha(2)-adrenergic receptor subtype C2 into phospholipid vesicles. Protein Expr Purif 22:1–10

    Article  PubMed  CAS  Google Scholar 

  21. Huang HJ, Liao CF, Yang BC, Kuo TT (1992) Functional expression of rat M5 muscarinic acetylcholine-receptor in yeast. Biochem Biophys Res Commun 182:1180–1186

    Article  PubMed  CAS  Google Scholar 

  22. Price LA, Strnad J, Pausch MH, Hadcock JR (1996) Pharmacological characterization of the rat A(2a) adenosine receptor functionally coupled to the yeast pheromone response pathway. Mol Pharmacol 50:829–837

    PubMed  CAS  Google Scholar 

  23. Joubert O, Nehme R, Bidet M, Mus-Veteau I (2010) Heterologous expression of human membrane receptors in the yeast Saccharomyces cerevisiae, heterologous expression of membrane proteins. Methods Mol Biol 601:87–103

    Google Scholar 

  24. Ferndahl C, Bonander N, Logez C, Wagner R, Gustafsson L, Larsson C, Hedfalk K, Darby RAJ, Bill RM (2010) Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microb Cell Fact 9:47

    Article  PubMed  Google Scholar 

  25. Kapat A, Jaakola VP, Heimo H, Liitti S, Heikinheimo P, Glumoff T, Goldman A (2000) Production and purification of recombinant human alpha 2C2 adrenergic receptor using Saccharomyces cerevisiae. Bioseparation 9:167–172

    Article  PubMed  CAS  Google Scholar 

  26. Duman JG, Miele RG, Liang H, Grella DK, Sim KL, Castellino FJ, Bretthauer RK (1998) O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol Appl Biochem 28:39–45

    PubMed  CAS  Google Scholar 

  27. Miele RG, Castellino FJ, Bretthauer RK (1997) Characterization of the acidic oligosaccharides assembled on the Pichia pastoris-expressed recombinant kringle 2 domain of human tissue-type plasminogen activator. Biotechnol Appl Biochem 26:79–83

    PubMed  CAS  Google Scholar 

  28. Barnett JA, Barnett L (2011) Yeast research: a historical overview. ASM, Herndon, VA

    Google Scholar 

  29. Treco DA, Lundblad V (2001) Preparation of yeast media. Curr Protoc Mol Biol Chapter 13, Unit13.1

    Google Scholar 

  30. Curran BP, Bugeja V (2006) Basic investigations in Saccharomyces cerevisiae. Methods Mol Biol 313:1–13

    PubMed  CAS  Google Scholar 

  31. Bonander N, Ferndahl C, Mostad P, Wilks MD, Chang C, Showe L, Gustafsson L, Larsson C, Bill RM (2008) Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. BMC Genomics 9:365

    Article  PubMed  Google Scholar 

  32. Verduyn C, Zomerdijk TPL, Dijken JP, Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19:181–185

    Article  CAS  Google Scholar 

  33. Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM (2005) Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci 14:1729–1740

    Article  PubMed  CAS  Google Scholar 

  34. Bawa Z, Bland CE, Bonander N, Bora N, Cartwright SP, Clare M, Conner MT, Darby RA, Dilworth MV, Holmes WJ, Jamshad M, Routledge SJ, Gross SR, Bill RM (2011) Understanding the yeast host cell response to recombinant membrane protein production. Biochem Soc Trans 39:719–723

    PubMed  CAS  Google Scholar 

  35. Wang H, Prorok M, Bretthauer RK, Castellino FJ (1997) Serine-578 is a major phosphorylation locus in human plasma plasminogen. Biochemistry 36:8100–8106

    Article  PubMed  CAS  Google Scholar 

  36. Ren J, Castellino FJ, Bretthauer RK (1997) Purification and properties of alpha-mannosidase II from Golgi-like membranes of baculovirus-infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochem J 324:951–956

    PubMed  CAS  Google Scholar 

  37. Bonander N, Darby RAJ, Grgic L, Bora N, Wen J, Brogna S, Poyner DR, O’Neill MAA, Bill RM (2009) Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb Cell Fact 8:10

    Article  PubMed  Google Scholar 

  38. Schneider JC, Guarente L (1991) Vectors for expression of cloned genes in yeast: regulation, overproduction and underproduction. Methods Enzymol 194:373–388

    Article  PubMed  CAS  Google Scholar 

  39. Zhang Z, Moo-Young M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435

    Article  PubMed  CAS  Google Scholar 

  40. Holmes WJ, Darby RAJ, Wilks MDB, Smith R, Bill RM (2009) Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microb Cell Fact 8:35

    Article  PubMed  Google Scholar 

  41. Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology 9:455–460

    Article  PubMed  CAS  Google Scholar 

  42. Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA (1991) Production of mouse epidermal growth-factor in yeast – high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105:205–212

    Article  PubMed  CAS  Google Scholar 

  43. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  PubMed  CAS  Google Scholar 

  44. Rosenberg MF, Bikadi Z, Chan J, Liu XP, Ni ZL, Cai XK, Ford RC, Mao QC (2010) The human breast cancer resistance protein (BCRP/ABCG2) shows conformational changes with mitoxantrone. Structure 18:482–493

    Article  PubMed  CAS  Google Scholar 

  45. Urbatsch IL, Wilke-Mounts S, Gimi K, Senior AE (2001) Purification and characterization of n-glycosylation mutant mouse and human p-glycoproteins expressed in Pichia pastoris cells. Arch Biochem Biophys 388:171–177

    Article  PubMed  CAS  Google Scholar 

  46. Jamshad M, Rajesh S, Stamataki Z, McKeating JA, Dafforn T, Overduin M, Bill RM (2008) Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expr Purif 57:206–216

    Article  PubMed  CAS  Google Scholar 

  47. Grunewald S, Haase W, Molsberger E, Michel H, Reilander H (2004) Production of the human D-2S receptor in the methylotrophic yeast P. pastoris. Receptors Channels 10:37–50

    Article  PubMed  Google Scholar 

  48. Shi XL, Feng MQ, Shi J, Shi ZHA, Zhong JA, Zhou P (2007) High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expr Purif 54:24–29

    Article  PubMed  CAS  Google Scholar 

  49. Ogunjimi AA, Chandler JM, Gooding CM, Recinos A, Choudary PV (1999) High-level secretory expression of immunologically active intact antibody from the yeast Pichia pastoris. Biotechnol Lett 21:561–567

    Article  CAS  Google Scholar 

  50. Andre N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126

    Article  PubMed  CAS  Google Scholar 

  51. Cregg JM, Cereghino JL, Shi JY, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  PubMed  CAS  Google Scholar 

  52. Otterstedt K, Larsson C, Bill RM, Stahlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:532–537

    Article  PubMed  CAS  Google Scholar 

  53. Singh S, Hedley D, Kara E, Gras A, Iwata S, Ruprecht J, Strange PG, Byrne B (2010) A purified C-terminally truncated human adenosine A2A receptor construct is functionally stable and degradation resistant. Protein Expr Purif 74:80–87

    Article  PubMed  CAS  Google Scholar 

  54. Li PZ, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124

    Article  PubMed  CAS  Google Scholar 

  55. Yinliang C, Cino J, Hart G, Freedman D, White C, Komives EA (1997) High protein expression in fermentation of recombinant Pichia pastoris by a fed-batch process. Process Biochem 32:107–111

    Article  Google Scholar 

  56. Jin H, Liu G, Ye X, Duan Z, Li Z, Shi Z (2010) Enhanced porcine interferon-α production by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration. Biochem Eng J 52:91–98

    Article  CAS  Google Scholar 

  57. Fraser NJ (2006) Expression and functional purification of a glycosylation deficient version of the human adenosine 2a receptor for structural studies. Protein Expr Purif 49:129–137

    Article  PubMed  CAS  Google Scholar 

  58. Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17

    Article  PubMed  Google Scholar 

  59. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44

    Article  PubMed  CAS  Google Scholar 

  60. Kim SJ, Lee JA, Kim YH, Song BK (2009) optimization of the functional expression of coprinus cinereus peroxidase in Pichia pastoris by varying the host and promoter. J Microbiol Biotechnol 19:966–971

    Article  PubMed  CAS  Google Scholar 

  61. Resina D, Cos O, Ferrer P, Valero F (2005) Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. Biotechnol Bioeng 91:760–767

    Article  PubMed  CAS  Google Scholar 

  62. Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  PubMed  CAS  Google Scholar 

  63. Dale C, Allen A, Fogerty S (1999) Pichia pastoris: a eukaryotic system for the large-scale production of biopharmaceuticals. Biopharm 12:36–40

    CAS  Google Scholar 

  64. Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Nat Biotechnol 11:905–910

    Article  CAS  Google Scholar 

  65. Mattanovich D, Callewaert N, Rouze P, Lin YC, Graf A, Redl A, Tiels P, Gasser B, De Schutter K (2009) Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Fact 8:53

    Article  PubMed  Google Scholar 

  66. Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia-pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385

    PubMed  CAS  Google Scholar 

  67. Lee CC, Williams TG, Wong DWS, Robertson GH (2005) An episomal expression vector for screening mutant gene libraries in Pichia pastoris. Plasmid 54:80–85

    Article  PubMed  CAS  Google Scholar 

  68. Choi SG, Hong IP, Anderson S (2006) Evaluation of a new episomal vector based on the GAP promoter for structural genomics in Pichia pastoris. J Microbiol Biotechnol 16:1362–1368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. J. Darby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+business Media, LLC

About this protocol

Cite this protocol

Darby, R.A.J., Cartwright, S.P., Dilworth, M.V., Bill, R.M. (2012). Which Yeast Species Shall I Choose? Saccharomyces cerevisiae Versus Pichia pastoris (Review). In: Bill, R. (eds) Recombinant Protein Production in Yeast. Methods in Molecular Biology, vol 866. Humana Press. https://doi.org/10.1007/978-1-61779-770-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-770-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-769-9

  • Online ISBN: 978-1-61779-770-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics