Skip to main content

Regulation of Platelet Function by Orai, STIM and TRP

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 898))

Abstract

Agonist-induced changes in cytosolic Ca2+ concentration ([Ca2+]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca2+ signals is store-operated Ca2+ entry (SOCE), where the Ca2+ sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca2+ signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281(38):28254–28264

    Article  CAS  PubMed  Google Scholar 

  2. Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA (2011) STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 286(14):12257–12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopez JJ, Camello-Almaraz C, Pariente JA, Salido GM, Rosado JA (2005) Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H+-ATPases in human platelets. Biochem J 390(Pt 1):243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tolhurst G, Carter RN, Amisten S, Holdich JP, Erlinge D, Mahaut-Smith MP (2008) Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes. Platelets 19(4):308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Redondo PC, Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets. Biochim Biophys Acta 1783(6):1163–1176

    Article  CAS  PubMed  Google Scholar 

  6. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283(37):25296–25304

    Article  CAS  PubMed  Google Scholar 

  7. Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA (2012) Capacitative and non-capacitative signaling complexes in human platelets. Biochim Biophys Acta 1823(8):1242–1251

    Article  CAS  PubMed  Google Scholar 

  8. Brownlow SL, Sage SO (2005) Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 94(4):839–845

    PubMed  Google Scholar 

  9. Harper AG, Brownlow SL, Sage SO (2008) A role for TRPV1 in agonist-evoked activation of human platelets. J Thromb Haemost 7(2):330–338

    Google Scholar 

  10. Albarran L, Lopez JJ, Dionisio N, Smani T, Salido GM, Rosado JA (2013) Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca(2+) entry by regulation of STIM1-Orai1 association. Biochim Biophys Acta 1833(12):3025–3034

    Article  CAS  PubMed  Google Scholar 

  11. Brass LF, Joseph SK (1985) A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J Biol Chem 260(28):15172–15179

    CAS  PubMed  Google Scholar 

  12. Lopez JJ, Redondo PC, Salido GM, Pariente JA, Rosado JA (2006) Two distinct Ca2+ compartments show differential sensitivity to thrombin, ADP and vasopressin in human platelets. Cell Signal 18(3):373–381

    Article  CAS  PubMed  Google Scholar 

  13. El-Daher SS, Patel Y, Siddiqua A, Hassock S, Edmunds S, Maddison B, Patel G, Goulding D, Lupu F, Wojcikiewicz RJ, Authi KS (2000) Distinct localization and function of (1,4,5)IP(3) receptor subtypes and the (1,3,4,5)IP(4) receptor GAP1(IP4BP) in highly purified human platelet membranes. Blood 95(11):3412–3422

    CAS  PubMed  Google Scholar 

  14. Dionisio N, Albarran L, Lopez JJ, Berna-Erro A, Salido GM, Bobe R, Rosado JA (2011) Acidic NAADP-releasable Ca(2+) compartments in the megakaryoblastic cell line MEG01. Biochim Biophys Acta 1813(8):1483–1494

    Article  CAS  PubMed  Google Scholar 

  15. Lopez JJ, Dionisio N, Berna-Erro A, Galan C, Salido GM, Rosado JA (2012) Two-pore channel 2 (TPC2) modulates store-operated Ca(2+) entry. Biochim Biophys Acta 1823(10):1976–1983

    Google Scholar 

  16. Bobe R, Bredoux R, Wuytack F, Quarck R, Kovacs T, Papp B, Corvazier E, Magnier C, Enouf J (1994) The rat platelet 97-kDa Ca2+ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein. J Biol Chem 269(2):1417–1424

    CAS  PubMed  Google Scholar 

  17. Dean WL, Chen D, Brandt PC, Vanaman TC (1997) Regulation of platelet plasma membrane Ca2+-ATPase by cAMP-dependent and tyrosine phosphorylation. J Biol Chem 272(24):15113–15119

    Article  CAS  PubMed  Google Scholar 

  18. Rosado JA, Saavedra FR, Redondo PC, Hernandez-Cruz JM, Salido GM, Pariente JA (2004) Reduced plasma membrane Ca2+-ATPase function in platelets from patients with non-insulin-dependent diabetes mellitus. Haematologica 89(9):1142–1144

    CAS  PubMed  Google Scholar 

  19. Bobe R, Bredoux R, Corvazier E, Lacabaratz-Porret C, Martin V, Kovacs T, Enouf J (2005) How many Ca2+-ATPase isoforms are expressed in a cell type? A growing family of membrane proteins illustrated by studies in platelets. Platelets 16(3-4):133–150

    Article  CAS  PubMed  Google Scholar 

  20. Valant PA, Adjei PN, Haynes DH (1992) Rapid Ca2+ extrusion via the Na+/Ca2+ exchanger of the human platelet. J Membr Biol 130(1):63–82

    Article  CAS  PubMed  Google Scholar 

  21. Kimura M, Aviv A, Reeves JP (1993) K(+)-dependent Na+/Ca2+ exchange in human platelets. J Biol Chem 268(10):6874–6877

    CAS  PubMed  Google Scholar 

  22. Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P, Schropp P, Muhlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117(11):3540–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilio K, van Kruchten R, Braun A, Berna-Erro A, Feijge MA, Stegner D, van der Meijden PE, Kuijpers MJ, Varga-Szabo D, Heemskerk JW, Nieswandt B (2010) Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J Biol Chem 285:23629–23638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bosl M, Stoll G, Nieswandt B (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113(9):2056–2063

    Article  CAS  PubMed  Google Scholar 

  25. Varga-Szabo D, Authi KS, Braun A, Bender M, Ambily A, Hassock SR, Gudermann T, Dietrich A, Nieswandt B (2008) Store-operated Ca2+ entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch 457:377–387

    Article  CAS  PubMed  Google Scholar 

  26. Harper MT, Londono JE, Quick K, Londono JC, Flockerzi V, Philipp SE, Birnbaumer L, Freichel M, Poole AW (2013) Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure. Sci Signal 6(281):ra50

    Article  PubMed  CAS  Google Scholar 

  27. Albarran L, Berna-Erro A, Dionisio N, Redondo PC, Lopez E, Lopez JJ, Salido GM, Brull Sabate JM, Rosado JA (2014) TRPC6 participates in the regulation of cytosolic basal calcium concentration in murine resting platelets. Biochim Biophys Acta 1843(4):789–796

    Article  CAS  PubMed  Google Scholar 

  28. Carter RN, Tolhurst G, Walmsley G, Vizuete-Forster M, Miller N, Mahaut-Smith MP (2006) Molecular and electrophysiological characterization of transient receptor potential ion channels in the primary murine megakaryocyte. J Physiol 576(Pt 1):151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sage SO, Jarvis GE, Jardin I, Rosado JA, Harper AG (2014) The TRPV1 ion channel is expressed in human but not mouse platelets. Platelets 25(5):390–392

    Article  CAS  PubMed  Google Scholar 

  30. Poole AW, Heath MF, Sage SO, Evans RJ (1993) A method for loading equine platelets with the fluorescent calcium indicator Fura-2: ADP induces a rise in the cytosolic free calcium ion concentration. Equine Vet J 25(1):45–48

    Article  CAS  PubMed  Google Scholar 

  31. Li BY, Bai Y, Li WH (1998) Enhancement of ADP-induced aggregation by 5-HT in rabbit platelets. Zhong Yao Li Xue Bao 19(1):58–62

    CAS  Google Scholar 

  32. Heemskerk JW, Feijge MA, Sage SO, Walter U (1994) Indirect regulation of Ca2+ entry by cAMP-dependent and cGMP-dependent protein kinases and phospholipase C in rat platelets. Eur J Biochem 223(2):543–551

    Article  CAS  PubMed  Google Scholar 

  33. Atucha NM, Iyu D, Alcaraz A, Rosa V, Martinez-Prieto C, Ortiz MC, Rosado JA, Garcia-Estan J (2007) Altered calcium signalling in platelets from bile-duct-ligated rats. Clin Sci (Lond) 112(3):167–174

    Article  CAS  Google Scholar 

  34. De Clerck F, Van Nueten JM (1983) Platelet-mediated vascular contractions. Inhibition by flunarizine, a calcium-entry blocker. Biochem Pharmacol 32(5):765–771

    Article  PubMed  Google Scholar 

  35. Salido GM, Sage SO, Rosado JA (2009) Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 21(4):457–461

    Article  CAS  PubMed  Google Scholar 

  36. Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ (2000) ADP is not an agonist at P2X(1) receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131(1):108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha, beta-methylene ATP. Thromb Haemost 85(2):303–308

    CAS  PubMed  Google Scholar 

  38. Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermylen J, Hoylaerts MF (2001) The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost 86(5):1264–1271

    CAS  PubMed  Google Scholar 

  39. Erhardt JA, Pillarisetti K, Toomey JR (2003) Potentiation of platelet activation through the stimulation of P2X1 receptors. J Thromb Haemost 1(12):2626–2635

    Article  CAS  PubMed  Google Scholar 

  40. Erhardt JA, Toomey JR, Douglas SA, Johns DG (2006) P2X1 stimulation promotes thrombin receptor-mediated platelet aggregation. J Thromb Haemost 4(4):882–890

    Article  CAS  PubMed  Google Scholar 

  41. Fung CY, Cendana C, Farndale RW, Mahaut-Smith MP (2007) Primary and secondary agonists can use P2X(1) receptors as a major pathway to increase intracellular Ca(2+) in the human platelet. J Thromb Haemost 5(5):910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ (2002) A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 135(2):363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahaut-Smith MP, Jones S, Evans RJ (2011) The P2X1 receptor and platelet function. Purinergic Signal 7(3):341–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jardin I, Redondo PC, Salido GM, Rosado JA (2008) Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783(1):84–97

    Article  CAS  PubMed  Google Scholar 

  45. Ramanathan G, Gupta S, Thielmann I, Pleines I, Varga-Szabo D, May F, Mannhalter C, Dietrich A, Nieswandt B, Braun A (2012) Defective diacylglycerol-induced Ca2+ entry but normal agonist-induced activation responses in TRPC6-deficient mouse platelets. J Thromb Haemost 10(3):419–429

    Article  CAS  PubMed  Google Scholar 

  46. Berna-Erro A, Albarran L, Dionisio N, Redondo PC, Alonso N, Gomez LJ, Salido GM, Rosado JA (2014) The canonical transient receptor potential 6 (TRPC6) channel is sensitive to extracellular pH in mouse platelets. Blood Cells Mol Dis 52(2–3):108–115

    Article  CAS  PubMed  Google Scholar 

  47. Rosado JA, Sage SO (2000) Protein kinase C activates non-capacitative calcium entry in human platelets. J Physiol 529(Pt 1):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harper MT, Mason MJ, Sage SO, Harper AG (2010) Phorbol ester-evoked Ca2+ signaling in human platelets is via autocrine activation of P(2X1) receptors, not a novel non-capacitative Ca2+ entry. J Thromb Haemost 8(7):1604–1613

    Article  CAS  PubMed  Google Scholar 

  49. Hassock SR, Zhu MX, Trost C, Flockerzi V, Authi KS (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100(8):2801–2811

    Article  CAS  PubMed  Google Scholar 

  50. Harper MT, Sage SO (2010) Src family tyrosine kinases activate thrombin-induced non-capacitative cation entry in human platelets. Platelets 21(6):445–450

    Article  CAS  PubMed  Google Scholar 

  51. Jardin I, Gomez LJ, Salido GM, Rosado JA (2009) Dynamic interaction of hTRPC6 with the Orai1/STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochem J 420:267–276

    Article  CAS  PubMed  Google Scholar 

  52. Yang H, Kim A, David T, Palmer D, Jin T, Tien J, Huang F, Cheng T, Coughlin SR, Jan YN, Jan LY (2012) TMEM16F forms a Ca2+ -activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151(1):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S (2013) Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 288(19):13305–13316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468(7325):834–838

    Article  CAS  PubMed  Google Scholar 

  55. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  56. Sage SO, Merritt JE, Hallam TJ, Rink TJ (1989) Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J 258(3):923–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sage SO, Reast R, Rink TJ (1990) ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J 265(3):675–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang SJ, Kwan CY (1998) Cyclopiazonic acid and thapsigargin induce platelet aggregation resulting from Ca2+ influx through Ca2+ store-activated Ca2+ -channels. Eur J Pharmacol 341(2–3):343–347

    Article  CAS  PubMed  Google Scholar 

  59. Cavallini L, Coassin M, Alexandre A (1995) Two classes of agonist-sensitive Ca2+ stores in platelets, as identified by their differential sensitivity to 2,5-di-(tert-butyl)-1,4-benzohydroquinone and thapsigargin. Biochem J 310(Pt 2):449–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sargeant P, Farndale RW, Sage SO (1993) The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett 315(3):242–246

    Article  CAS  PubMed  Google Scholar 

  61. Sargeant P, Farndale RW, Sage SO (1993) ADP- and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem 268(24):18151–18156

    CAS  PubMed  Google Scholar 

  62. Alonso MT, Sanchez A, Garcia-Sancho J (1990) Arachidonic acid-induced calcium influx in human platelets. Comparison with the effect of thrombin. Biochem J 272(2):435–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM (2003) Ca2+ -independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 278(14):11909–11915

    Article  CAS  PubMed  Google Scholar 

  64. Geiger J, Nolte C, Butt E, Sage SO, Walter U (1992) Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets. Proc Natl Acad Sci U S A 89(3):1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosado JA, Jenner S, Sage SO (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem 275(11):7527–7533

    Article  CAS  PubMed  Google Scholar 

  66. Rosado JA, Sage SO (2000) The actin cytoskeleton in store-mediated calcium entry. J Physiol 526(Pt 2):221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Redondo PC, Harper AG, Salido GM, Pariente JA, Sage SO, Rosado JA (2004) A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets. J Physiol 558(Pt 1):99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rosado JA, Graves D, Sage SO (2000) Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J 351(Pt 2):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rosado JA, Sage SO (2000) Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochem J 347(Pt 1):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rosado JA, Porras T, Conde M, Sage SO (2001) Cyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets. J Biol Chem 276(19):15666–15675

    Article  CAS  PubMed  Google Scholar 

  71. Redondo PC, Ben-Amor N, Salido GM, Bartegi A, Pariente JA, Rosado JA (2005) Ca2+ -independent activation of Bruton’s tyrosine kinase is required for store-mediated Ca2+ entry in human platelets. Cell Signal 17(8):1011–1021

    Article  CAS  PubMed  Google Scholar 

  72. Ben Amor N, Redondo PC, Bartegi A, Pariente JA, Salido GM, Rosado JA (2006) A role for 5,6-epoxyeicosatrienoic acid in calcium entry by de novo conformational coupling in human platelets. J Physiol 570(Pt 2):309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Redondo PC, Harper MT, Rosado JA, Sage SO (2006) A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets. Blood 107(3):973–979

    Article  CAS  PubMed  Google Scholar 

  74. Harper AG, Sage SO (2007) A role for the intracellular protease calpain in the activation of store-operated calcium entry in human platelets. Cell Calcium 41(2):169–178

    Article  CAS  PubMed  Google Scholar 

  75. Rosado JA, Lopez JJ, Harper AG, Harper MT, Redondo PC, Pariente JA, Sage SO, Salido GM (2004) Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J Biol Chem 279(28):29231–29235

    Article  CAS  PubMed  Google Scholar 

  76. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  79. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 103(45):16704–16709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kurosaki T, Baba Y (2010) Ca2+ signaling and STIM1. Prog Biophys Mol Biol 103(1):51–58

    Article  CAS  PubMed  Google Scholar 

  81. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284(13):8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385(1):49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Derler I, Fahrner M, Muik M, Lackner B, Schindl R, Groschner K, Romanin C (2009) A Ca2+ Release-activated Ca2+ (CRAC) Modulatory Domain (CMD) within STIM1 mediates fast Ca2+ -dependent inactivation of ORAI1 channels. J Biol Chem 284(37):24933–24938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jha A, Ahuja M, Maleth J, Moreno CM, Yuan JP, Kim MS, Muallem S (2013) The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function. J Cell Biol 202(1):71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  88. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8(7):771–773

    Article  CAS  PubMed  Google Scholar 

  89. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  CAS  PubMed  Google Scholar 

  90. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    Article  CAS  PubMed  Google Scholar 

  91. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277(44):42157–42163

    Article  CAS  PubMed  Google Scholar 

  92. Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol Chem 278(13):11337–11343

    Article  CAS  PubMed  Google Scholar 

  93. Ambudkar IS, Ong HL, Liu X, Bandyopadhyay B, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42(2):213–223

    Article  CAS  PubMed  Google Scholar 

  94. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sampieri A, Zepeda A, Saldaña C, Salgado A, Vaca L (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium 44(5):479–491

    Article  CAS  Google Scholar 

  96. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  97. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323

    Article  CAS  PubMed  Google Scholar 

  100. Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8(4):643–651

    Article  CAS  PubMed  Google Scholar 

  101. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92(21):9652–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373(3):193–198

    Article  CAS  PubMed  Google Scholar 

  103. Petersen CC, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311(Pt 1):41–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9(2):229–231

    Article  CAS  PubMed  Google Scholar 

  105. Jardin I, Salido GM, Rosado JA (2008) Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels (Austin) 2(6):401–403

    Article  Google Scholar 

  106. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(Pt 10):2275–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3(4):221–225

    Article  CAS  Google Scholar 

  109. Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289(10):6372–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renne T, Stoll G, Nieswandt B (2008) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205(7):1583–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lopez JJ, Salido G, Rosado JA (2012) SOCE and Ca2+ handling in platelet dysfunction. In: Groschner K, Graier WF, Romanin C (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, New York, pp 377–396

    Chapter  Google Scholar 

  112. Jardin I, Lopez JJ, Redondo PC, Salido GM, Rosado JA (2009) Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane STIM1. Biochim Biophys Acta 1793(10):1614–1622

    Article  CAS  PubMed  Google Scholar 

  113. Bergmeier W, Oh-Hora M, McCarl CA, Roden RC, Bray PF, Feske S (2009) R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood 113(3):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284(15):9733–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S (2009) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584:2022–2027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104(11):4682–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lopez E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC (2013) FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. Biochim Biophys Acta 1833(3):652–662

    Article  CAS  PubMed  Google Scholar 

  118. Rosado JA, Sage SO (2001) Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochem J 356(Pt 1):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Functional relevance of the de novo coupling between hTRPC1 and type II IP3 receptor in store-operated Ca2+ entry in human platelets. Cell Signal 20(4):737–747

    Article  CAS  PubMed  Google Scholar 

  120. Harper AG, Sage SO (2007) A key role for reverse Na+/Ca2+ exchange influenced by the actin cytoskeleton in store-operated Ca2+ entry in human platelets: evidence against the de novo conformational coupling hypothesis. Cell Calcium 42(6):606–617

    Article  CAS  PubMed  Google Scholar 

  121. Lewandrowski U, Wortelkamp S, Lohrig K, Zahedi RP, Wolters DA, Walter U, Sickmann A (2009) Platelet membrane proteomics: a novel repository for functional research. Blood 114(1):e10–e19

    Article  CAS  PubMed  Google Scholar 

  122. Harper AG, Mason MJ, Sage SO (2009) A key role for dense granule secretion in potentiation of the Ca2+ signal arising from store-operated calcium entry in human platelets. Cell Calcium 45(5):413–420

    Article  CAS  PubMed  Google Scholar 

  123. Sage SO, Pugh N, Farndale RW, Harper AG (2013) Pericellular Ca(2+) recycling potentiates thrombin-evoked Ca(2+) signals in human platelets. Physiol Rep 1(5):e00085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. McFadyen JD, Jackson SP (2013) Differentiating haemostasis from thrombosis for therapeutic benefit. Thromb Haemost 110(5):859–867

    Article  CAS  PubMed  Google Scholar 

  125. Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33

    Article  CAS  PubMed  Google Scholar 

  126. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949

    Article  CAS  PubMed  Google Scholar 

  127. Brass LF, Wannemacher KM, Ma P, Stalker TJ (2011) Regulating thrombus growth and stability to achieve an optimal response to injury. J Thromb Haemost 9(Suppl 1):66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81(5):695–704

    Article  CAS  PubMed  Google Scholar 

  129. Flores A, Buchanan GR (2013) Occult hemorrhage in immune thrombocytopenia. Semin Hematol 50(Suppl 1):S26–S30

    Article  PubMed  Google Scholar 

  130. Saavedra FR, Redondo PC, Hernandez-Cruz JM, Salido GM, Pariente JA, Rosado JA (2004) Store-operated Ca2+ entry and tyrosine kinase pp60src hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Arch Biochem Biophys 432(2):261–268

    Article  CAS  PubMed  Google Scholar 

  131. Croce KJ, Sakuma M, Simon DI (2007) Platelet–leukocyte–endothelium cross talk. In: Gresele P, Fuster V, Lopez JA, Page CP, Vermylen J (eds) Platelets in hematologic and cardiovascular disorders: a clinical handbook. Cambridge University Press, Cambridge, pp 106–123

    Google Scholar 

  132. Crittenden JR, Bergmeier W, Zhang Y, Piffath CL, Liang Y, Wagner DD, Housman DE, Graybiel AM (2004) CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 10(9):982–986

    Article  CAS  PubMed  Google Scholar 

  133. Stegner D, Nieswandt B (2011) Platelet receptor signaling in thrombus formation. J Mol Med (Berl) 89(2):109–121

    Article  CAS  Google Scholar 

  134. Rosado JA, Meijer EM, Hamulyak K, Novakova I, Heemskerk JW, Sage SO (2001) Fibrinogen binding to the integrin alpha(IIb)beta(3) modulates store-mediated calcium entry in human platelets. Blood 97(9):2648–2656

    Article  CAS  PubMed  Google Scholar 

  135. Heemskerk JW, Bevers EM, Lindhout T (2002) Platelet activation and blood coagulation. Thromb Haemost 88(2):186–193

    CAS  PubMed  Google Scholar 

  136. van der Meijden PE, Feijge MA, Giesen PL, Huijberts M, van Raak LP, Heemskerk JW (2005) Platelet P2Y12 receptors enhance signalling towards procoagulant activity and thrombin generation. A study with healthy subjects and patients at thrombotic risk. Thromb Haemost 93(6):1128–1136

    PubMed  Google Scholar 

  137. Leon C, Ravanat C, Freund M, Cazenave JP, Gachet C (2003) Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol 23(10):1941–1947

    Article  CAS  PubMed  Google Scholar 

  138. Morrell CN, Maggirwar SB (2011) Recently recognized platelet agonists. Curr Opin Hematol 18(5):309–314

    Article  CAS  PubMed  Google Scholar 

  139. Heemskerk JW, Mattheij NJ, Cosemans JM (2013) Platelet-based coagulation: different populations, different functions. J Thromb Haemost 11(1):2–16

    Article  CAS  PubMed  Google Scholar 

  140. Davies TA, Drotts DL, Weil GJ, Simons ER (1989) Cytoplasmic Ca2+ is necessary for thrombin-induced platelet activation. J Biol Chem 264(33):19600–19606

    CAS  PubMed  Google Scholar 

  141. Mahaut-Smith MP (2012) The unique contribution of ion channels to platelet and megakaryocyte function. J Thromb Haemost 10(9):1722–1732

    Article  CAS  PubMed  Google Scholar 

  142. Rosado JA (2011) Acidic Ca(2+) stores in platelets. Cell Calcium 50(2):168–174

    Article  CAS  PubMed  Google Scholar 

  143. Kuwahara M, Sugimoto M, Tsuji S, Miyata S, Yoshioka A (1999) Cytosolic calcium changes in a process of platelet adhesion and cohesion on a von Willebrand factor-coated surface under flow conditions. Blood 94(4):1149–1155

    CAS  PubMed  Google Scholar 

  144. Tew JG, Roberts RR, Donaldson DM (1974) Release of beta-lysin from platelets by thrombin and by a factor produced in heparinized blood. Infect Immun 9(1):179–186

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Eastham RD (1964) Rapid adhesive platelet count in whole blood. J Clin Pathol 17:45–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Harper MT, Poole AW (2011) Store-operated calcium entry and non-capacitative calcium entry have distinct roles in thrombin-induced calcium signalling in human platelets. Cell Calcium 50(4):351–358

    Article  CAS  PubMed  Google Scholar 

  147. Ahmad F, Boulaftali Y, Greene TK, Ouellette TD, Poncz M, Feske S, Bergmeier W (2011) Relative contributions of stromal interaction molecule 1 and CalDAG-GEFI to calcium-dependent platelet activation and thrombosis. J Thromb Haemost 9(10):2077–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2(93):ra67

    Article  PubMed  Google Scholar 

  149. Misceo D, Holmgren A, Louch WE, Holme PA, Mizobuchi M, Morales RJ, De Paula AM, Stray-Pedersen A, Lyle R, Dalhus B, Christensen G, Stormorken H, Tjonnfjord GE, Frengen E (2014) A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 35(5):556–564

    Article  CAS  PubMed  Google Scholar 

  150. Nesin V, Wiley G, Kousi M, Ong EC, Lehmann T, Nicholl DJ, Suri M, Shahrizaila N, Katsanis N, Gaffney PM, Wierenga KJ, Tsiokas L (2014) Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A 111(11):4197–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Morin G, Bruechle NO, Singh AR, Knopp C, Jedraszak G, Elbracht M, Bremond-Gignac D, Hartmann K, Sevestre H, Deutz P, Herent D, Nurnberg P, Romeo B, Konrad K, Mathieu-Dramard M, Oldenburg J, Bourges-Petit E, Shen Y, Zerres K, Ouadid-Ahidouch H, Rochette J (2014) Gain-of-function mutation in STIM1 (p.R304W) is associated with Stormorken Syndrome. Hum Mutat 35(10):1221–1232

    Article  CAS  PubMed  Google Scholar 

  152. Markello T, Chen D, Kwan JY, Horkayne-Szakaly I, Morrison A, Simakova O, Maric I, Lozier J, Cullinane AR, Kilo T, Meister L, Pakzad K, Bone W, Chainani S, Lee E, Links A, Boerkoel C, Fischer R, Toro C, White JG, Gahl WA, Gunay-Aygun M (2014) York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab 114(3):474–482

    Google Scholar 

  153. Nakamura L, Sandrock-Lang K, Speckmann C, Vraetz T, Buhrlen M, Ehl S, Heemskerk JW, Zieger B (2013) Platelet secretion defect in a patient with stromal interaction molecule 1 deficiency. Blood 122(22):3696–3698

    Article  CAS  PubMed  Google Scholar 

  154. Barr JD, Chauhan AK, Schaeffer GV, Hansen JK, Motto DG (2013) Red blood cells mediate the onset of thrombosis in the ferric chloride murine model. Blood 121(18):3733–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Eckly A, Hechler B, Freund M, Zerr M, Cazenave JP, Lanza F, Mangin PH, Gachet C (2011) Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost 9(4):779–789

    Article  CAS  PubMed  Google Scholar 

  156. Watson SP, Asazuma N, Atkinson B, Berlanga O, Best D, Bobe R, Jarvis G, Marshall S, Snell D, Stafford M, Tulasne D, Wilde J, Wonerow P, Frampton J (2001) The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thromb Haemost 86(1):276–288

    CAS  PubMed  Google Scholar 

  157. Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99(12):1293–1304

    Article  CAS  PubMed  Google Scholar 

  158. Mahaut-Smith MP (2013) A role for platelet TRPC channels in the Ca2+ response that induces procoagulant activity. Sci Signal 6(281):pe23

    Article  PubMed  CAS  Google Scholar 

  159. Dubois C, Panicot-Dubois L, Gainor JF, Furie BC, Furie B (2007) Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. J Clin Invest 117(4):953–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cifuni SM, Wagner DD, Bergmeier W (2008) CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 112(5):1696–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McCarl CA, Picard C, Khalil S, Kawasaki T, Rother J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K, Ehl S, Notheis G, Albert MH, Belohradsky BH, Kirschner J, Rao A, Fischer A, Feske S (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124(6):1311–1318, e1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. van Kruchten R, Braun A, Feijge MA, Kuijpers MJ, Rivera-Galdos R, Kraft P, Stoll G, Kleinschnitz C, Bevers EM, Nieswandt B, Heemskerk JW (2012) Antithrombotic potential of blockers of store-operated calcium channels in platelets. Arterioscler Thromb Vasc Biol 32(7):1717–1723

    Article  PubMed  CAS  Google Scholar 

  163. Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY, Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, Rubin LJ, Yuan JX (2009) A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119(17):2313–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Paez Espinosa EV, Murad JP, Ting HJ, Khasawneh FT (2012) Mouse transient receptor potential channel 6: role in hemostasis and thrombogenesis. Biochem Biophys Res Commun 417(2):853–856

    Article  CAS  PubMed  Google Scholar 

  165. Scrimgeour NR, Wilson DP, Rychkov GY (2012) Glu(1)(0)(6) in the Orai1 pore contributes to fast Ca(2)(+)-dependent inactivation and pH dependence of Ca(2)(+) release-activated Ca(2)(+) (CRAC) current. Biochem J 441(2):743–753

    Article  CAS  PubMed  Google Scholar 

  166. Marumo M, Suehiro A, Kakishita E, Groschner K, Wakabayashi I (2001) Extracellular pH affects platelet aggregation associated with modulation of store-operated Ca(2+) entry. Thromb Res 104(5):353–360

    Article  CAS  PubMed  Google Scholar 

  167. Green FW Jr, Kaplan MM, Curtis LE, Levine PH (1978) Effect of acid and pepsin on blood coagulation and platelet aggregation. A possible contributor prolonged gastroduodenal mucosal hemorrhage. Gastroenterology 74(1):38–43

    CAS  PubMed  Google Scholar 

  168. Potzsch B, Ivaskevicius V (2011) Haemostasis management of massive bleeding. Hamostaseologie 31(1):15–20

    Article  CAS  PubMed  Google Scholar 

  169. Zbidi H, Lopez JJ, Amor NB, Bartegi A, Salido GM, Rosado JA (2009) Enhanced expression of STIM1/Orai1 and TRPC3 in platelets from patients with type 2 diabetes mellitus. Blood Cells Mol Dis 43(2):211–213

    Article  CAS  PubMed  Google Scholar 

  170. Liu D, Maier A, Scholze A, Rauch U, Boltzen U, Zhao Z, Zhu Z, Tepel M (2008) High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway. Arterioscler Thromb Vasc Biol 28(4):746–751

    Article  PubMed  CAS  Google Scholar 

  171. Jardin I, Lopez JJ, Zbidi H, Bartegi A, Salido GM, Rosado JA (2011) Attenuated store-operated divalent cation entry and association between STIM1, Orai1, hTRPC1 and hTRPC6 in platelets from type 2 diabetic patients. Blood Cells Mol Dis 46(3):252–260

    Article  CAS  PubMed  Google Scholar 

  172. Bon RS, Beech DJ (2013) In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels – mirage or pot of gold? Br J Pharmacol 170(3):459–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by MINECO (Grants BFU2013-45564-C2-1-P and BFU2013-45564-C2-2-P) and Junta de Extremadura-FEDER (GR15029). A. B-E is supported from UPF “MINECO – Plan Nacional de I+D+i(2008-2012) – SAF 2012-38140”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Rosado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berna-Erro, A., Jardín, I., Smani, T., Rosado, J.A. (2016). Regulation of Platelet Function by Orai, STIM and TRP. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_8

Download citation

Publish with us

Policies and ethics