Skip to main content

Advertisement

Log in

Store-operated Ca2+ entry in platelets occurs independently of transient receptor potential (TRP) C1

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Changes in [Ca2+]i are a central step in platelet activation. In nonexcitable cells, receptor-mediated depletion of intracellular Ca2+ stores triggers Ca2+ entry through store-operated calcium (SOC) channels. Stromal interaction molecule 1 (STIM1) has been identified as an endoplasmic reticulum (ER)-resident Ca2+ sensor that regulates store-operated calcium entry (SOCE), but the identity of the SOC channel in platelets has been controversially debated. Some investigators proposed transient receptor potential (TRP) C1 to fulfil this function based on the observation that antibodies against the channel impaired SOCE in platelets. However, others could not detect TRPC1 in the plasma membrane of platelets and raised doubts about the specificity of the inhibiting anti-TRPC1 antibodies. To address the role of TRPC1 in SOCE in platelets, we analyzed mice lacking TRPC1. Platelets from these mice display fully intact SOCE and also otherwise unaltered calcium homeostasis compared to wild-type. Furthermore, platelet function in vitro and in vivo is not altered in the absence of TRPC1. Finally, studies on human platelets revealed that the presumably inhibitory anti-TRPC1 antibodies have no specific effect on SOCE and fail to bind to the protein. Together, these results provide evidence that SOCE in platelets is mediated by channels other than TRPC1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  2. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  3. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  PubMed  CAS  Google Scholar 

  4. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  5. Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T (2008) Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 9:81–88

    Article  PubMed  CAS  Google Scholar 

  6. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  7. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  8. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    Article  PubMed  CAS  Google Scholar 

  9. Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P, Schropp P, Muhlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117:3540–3550

    Article  PubMed  CAS  Google Scholar 

  10. Berg LP, Shamsher MK, El-Daher SS, Kakkar VV, Authi KS (1997) Expression of human TRPC genes in the megakaryocytic cell lines MEG01, DAMI and HEL. FEBS Lett 403:83–86

    Article  PubMed  CAS  Google Scholar 

  11. den DE, Molin DG, Breikers G, van OR, Akkerman JW, van Eys GJ, Heemskerk JW (2001) Expression of transient receptor potential mRNA isoforms and Ca(2+) influx in differentiating human stem cells and platelets. Biochim Biophys Acta 1539:243–255

    Article  Google Scholar 

  12. Carter RN, Tolhurst G, Walmsley G, Vizuete-Forster M, Miller N, Mahaut-Smith MP (2006) Molecular and electrophysiological characterization of transient receptor potential ion channels in the primary murine megakaryocyte. J Physiol 576:151–162

    Article  PubMed  CAS  Google Scholar 

  13. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277:42157–42163

    Article  PubMed  CAS  Google Scholar 

  14. Rosado JA, Sage SO (2001) Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochem J 356:191–198

    Article  PubMed  CAS  Google Scholar 

  15. Rosado JA, Sage SO (2000) Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochem J 350(Pt 3):631–635

    Article  PubMed  CAS  Google Scholar 

  16. Brownlow SL, Sage SO (2005) Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 94:839–845

    PubMed  Google Scholar 

  17. Wakabayashi I, Marumo M, Graziani A, Poteser M, Groschner K (2006) TRPC4 expression determines sensitivity of the platelet-type capacitative Ca2+ entry channel to intracellular alkalosis. Platelets 17:454–461

    Article  PubMed  CAS  Google Scholar 

  18. Hassock SR, Zhu MX, Trost C, Flockerzi V, Authi KS (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100:2801–2811

    Article  PubMed  CAS  Google Scholar 

  19. Flockerzi V, Jung C, Aberle T, Meissner M, Freichel M, Philipp SE, Nastainczyk W, Maurer P, Zimmermann R (2005) Specific detection and semi-quantitative analysis of TRPC4 protein expression by antibodies. Pflugers Arch 451:81–86

    Article  PubMed  CAS  Google Scholar 

  20. Ong HL, Chen J, Chataway T, Brereton H, Zhang L, Downs T, Tsiokas L, Barritt G (2002) Specific detection of the endogenous transient receptor potential (TRP)-1 protein in liver and airway smooth muscle cells using immunoprecipitation and Western-blot analysis. Biochem J 364:641–648

    Article  PubMed  CAS  Google Scholar 

  21. Authi KS (2007) TRP channels in platelet function. Handb Exp Pharmacol(179):425–443

    Article  PubMed  CAS  Google Scholar 

  22. Harper AG, Sage SO (2007) A key role for reverse Na+/Ca2+ exchange influenced by the actin cytoskeleton in store-operated Ca2+ entry in human platelets: evidence against the de novo conformational coupling hypothesis. Cell Calcium 42:606–617

    Article  PubMed  CAS  Google Scholar 

  23. Dietrich A, Kalwa H, Storch U, Mederos YS, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T (2007) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455:465–477

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(−/−) mice. Proc Natl Acad Sci U S A 104:17542–17547

    Article  PubMed  CAS  Google Scholar 

  25. Heemskerk JW, Feijge MA, Rietman E, Hornstra G (1991) Rat platelets are deficient in internal Ca2+ release and require influx of extracellular Ca2+ for activation. FEBS Lett 284:223–226

    Article  PubMed  CAS  Google Scholar 

  26. Nieswandt B, Brakebusch C, Bergmeier W, Schulte V, Bouvard D, Mokhtari-Nejad R, Lindhout T, Heemskerk JW, Zirngibl H, Fassler R (2001) Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 20:2120–2130

    Article  PubMed  CAS  Google Scholar 

  27. Dietrich A, Mederos YS, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25:6980–6989

    Article  PubMed  CAS  Google Scholar 

  28. Bird GS, Aziz O, Lievremont JP, Wedel BJ, Trebak M, Vazquez G, Putney JW Jr (2004) Mechanisms of phospholipase C-regulated calcium entry. Curr Mol Med 4:291–301

    Article  PubMed  CAS  Google Scholar 

  29. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281:28254–28264

    Article  PubMed  CAS  Google Scholar 

  30. Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    Article  PubMed  CAS  Google Scholar 

  31. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  PubMed  CAS  Google Scholar 

  32. Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9:89–96

    Article  PubMed  CAS  Google Scholar 

  33. Sage SO, Brownlow SL, Rosado JA (2002) TRP channels and calcium entry in human platelets. Blood 100:4245–4246

    Article  PubMed  CAS  Google Scholar 

  34. Authi KS, Hassock S, Zhu MX, Flockerzi V, Trost C (2002) TRPC channels in calcium entry in human platelets. Blood 100:4246–4247

    CAS  Google Scholar 

  35. Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60

    Article  PubMed  CAS  Google Scholar 

  36. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8:1227–1234

    Article  PubMed  CAS  Google Scholar 

  37. Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304

    Article  PubMed  CAS  Google Scholar 

  38. Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor. Blood 102:449–461

    Article  PubMed  CAS  Google Scholar 

  39. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99:7461–7466

    Article  PubMed  CAS  Google Scholar 

  40. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    Article  PubMed  CAS  Google Scholar 

  41. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3:121–127

    Article  PubMed  CAS  Google Scholar 

  42. Knight DE, Scrutton MC (1984) Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature 309:66–68

    Article  PubMed  CAS  Google Scholar 

  43. Hughes K, Crawford N (1989) Reversible electropermeabilisation of human and rat blood platelets: evaluation of morphological and functional integrity ‘in vitro’ and ‘in vivo’. Biochim Biophys Acta 981:277–287

    Article  PubMed  CAS  Google Scholar 

  44. Authi KS, Hughes K, Crawford N (1989) High incorporation of [3H]inositol into phosphoinositides of human platelets during reversible electropermeabilisation. FEBS Lett 254:52–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Sylvia Hengst for the excellent technical support. This work was supported by grant Ni556/7-1 and the SFB 688 from the Deutsche Forschungsgemeinschaft (DFG) (to B.N.). AA is supported by the Medical Research Council (UK), and KSA is supported by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Nieswandt.

Additional information

David Varga-Szabo and Kalwant S. Authi contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga-Szabo, D., Authi, K.S., Braun, A. et al. Store-operated Ca2+ entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch - Eur J Physiol 457, 377–387 (2008). https://doi.org/10.1007/s00424-008-0531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0531-4

Keywords

Navigation