Skip to main content

Controversies in Neoplastic Myeloplasia

  • Chapter
  • First Online:
Myeloid-Derived Suppressor Cells and Cancer

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN))

  • 666 Accesses

Abstract

The neutrophilia observed in cancer patients is associated with T-cell immunosuppression, disease progression, and a poor prognosis. In recent years, this has been reported to be due to the expansion of immature myelopoietic progenitors whose differentiation has been arrested and which are identified as myeloid-derived suppressor cells (MDSCs). However, despite the recent and intense focus on these cells, their phenotypes and their role in tumor progression remain controversial. In this chapter, we have focused on five of these controversies: (1) What are MDSCs phenotypically? (2) Is T-cell suppression by MDSCs antigen specific? (3) What are the differences between PMN-MDSCs and neutrophils (PMNs)?; (4) What are the differences between M-MDSCs and monocytes/macrophages?; and (5), What are the clinically effective therapeutic interventions for MDSCs? While there are other controversies in the MDSC realm, we suggest that these are currently the critical questions on which our understanding of their basic, translational and clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gary W, Wood JEN, Stephens R (1979) Relationship between monocytosis and T-lymphocyte function in human cancer. Natl Cancer Inst 63(3):587–592

    Google Scholar 

  2. Lappat EJ, Cawein M (1964) A study of the leukemoid response to transplantable a-280 tumor in mice. Cancer Res 24:302–311

    CAS  PubMed  Google Scholar 

  3. Lee MY, Rosse C (1982) Depletion of lymphocyte subpopulations in primary and secondary lymphoid organs of mice by a transplanted granulocytosis-inducing mammary carcinoma. Cancer Res 42(4):1255–1260

    CAS  PubMed  Google Scholar 

  4. Bennett JA, Rao VS, Mitchell MS (1978) Systemic bacillus Calmette-Guerin (BCG) activates natural suppressor cells. Proc Natl Acad Sci USA 75(10):5142–5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsuchiya Y, Igarashi M, Suzuki R, Kumagai K (1988) Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J Immunol 141(2):699–708

    CAS  PubMed  Google Scholar 

  6. Bennett JA, Mitchell MS (1979) Induction of suppressor cells by intravenous administration of Bacillus Calmette-Guerin and its modulation by cyclophosphamide. Biochem Pharmacol 28(12):1947–1952

    Article  CAS  PubMed  Google Scholar 

  7. Wren SM, Wepsic HT, Larson CH, De Silva MA, Mizushima Y (1983) Inhibition of the graft-versus-host response by BCGcw-induced suppressor cells or prostaglandin E1. Cell Immunol 76(2):361–371

    Article  CAS  PubMed  Google Scholar 

  8. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425; author reply 426. doi:10.1158/0008-5472.CAN-06-3037

    Google Scholar 

  9. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35. doi:10.1002/eji.200939903

    Article  CAS  PubMed  Google Scholar 

  10. Ribechini E, Leenen PJ, Lutz MB (2009) Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells. Eur J Immunol 39(12):3538–3551. doi:10.1002/eji.200939530

    Article  CAS  PubMed  Google Scholar 

  11. Rose S, Misharin A, Perlman H (2012) A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry Part A J Int Soc Anal Cytol 81(4):343–350. doi:10.1002/cyto.a.22012

    Article  CAS  Google Scholar 

  12. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. doi:10.1182/blood-2007-07-099226

    Article  CAS  PubMed  Google Scholar 

  14. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res Official J Am Assoc Cancer Res 1(1):95–103

    CAS  Google Scholar 

  15. LaFace D, Talmadge J (2011) Meeting report: regulatory myeloid cells. Int Immunopharmacol 11(7):780–782. doi:10.1016/j.intimp.2011.01.031

    Article  CAS  PubMed  Google Scholar 

  16. Ko J, Rayman Patricia, Obery Dana, Lindner Daniel, Borden Ernest, Finke James (2013) Proangiogenic neutrophilic-myeloid-derived suppressor cells emerge via two parallel pathways in renal cell carcinoma and melanoma. J Immunother Cancer 1:159

    Article  Google Scholar 

  17. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752. doi:10.1038/nrc3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, Mandruzzato S (2015) Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry Part B Clin Cytometry 88(2):77–91. doi:10.1002/cyto.b.21206

    Article  CAS  Google Scholar 

  19. Abe F, Younos I, Westphal S, Samson H, Scholar E, Dafferner A, Hoke TA, Talmadge JE (2010) Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice. Int Immunopharmacol 10(1):140–145. doi:10.1016/j.intimp.2009.09.023

    Article  CAS  PubMed  Google Scholar 

  20. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–5669. doi:10.1158/0008-5472.CAN-10-1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13(3):193–205. doi:10.1016/j.ccr.2007.11.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115(7):1461–1471. doi:10.1182/blood-2009-08-237412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sawant A, Deshane J, Jules J, Lee CM, Harris BA, Feng X, Ponnazhagan S (2013) Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73(2):672–682. doi:10.1158/0008-5472.CAN-12-2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131. doi:10.1158/0008-5472.CAN-05-1299

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1):240–249

    Article  CAS  PubMed  Google Scholar 

  27. Mundy-Bosse BL, Young GS, Bauer T, Binkley E, Bloomston M, Bill MA, Bekaii-Saab T, Carson WE 3rd, Lesinski GB (2011) Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4(+) T cells from patients with GI malignancy. Cancer Immunol Immunother CII 60(9):1269–1279. doi:10.1007/s00262-011-1029-z

    Article  CAS  PubMed  Google Scholar 

  28. Mao Y, Poschke I, Wennerberg E, Pico de Coana Y, Egyhazi Brage S, Schultz I, Hansson J, Masucci G, Lundqvist A, Kiessling R (2013) Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 73(13):3877–3887. doi:10.1158/0008-5472.CAN-12-4115

    Article  CAS  PubMed  Google Scholar 

  29. Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7(2):140–151. doi:10.1016/j.intimp.2006.09.021

    Article  CAS  PubMed  Google Scholar 

  30. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77. doi:10.1158/0008-5472.CAN-09-2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 183(2):937–944. doi:10.4049/jimmunol.0804253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243. doi:10.1053/j.gastro.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  33. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835. doi:10.1038/nm1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Investig 121(10):4015–4029. doi:10.1172/JCI45862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208(10):1949–1962. doi:10.1084/jem.20101956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhopale VM, Yang M, Yu K, Thom SR (2015) Factors associated with nitric oxide-mediated beta2 integrin inhibition of neutrophils. J Biol Chem 290(28):17474–17484. doi:10.1074/jbc.M115.651620

    Article  CAS  PubMed  Google Scholar 

  37. Singh RK, Varney ML, Buyukberber S, Ino K, Ageitos AG, Reed E, Tarantolo S, Talmadge JE (1999) Fas-FasL-mediated CD4+ T-cell apoptosis following stem cell transplantation. Cancer Res 59(13):3107–3111

    CAS  PubMed  Google Scholar 

  38. Chen S, Akbar SM, Miyake T, Abe M, Al-Mahtab M, Furukawa S, Bunzo M, Hiasa Y, Onji M (2015) Diminished immune response to vaccinations in obesity: role of myeloid-derived suppressor and other myeloid cells. Obes Res Clin Pract 9(1):35–44. doi:10.1016/j.orcp.2013.12.006

    Article  PubMed  Google Scholar 

  39. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560. doi:10.1158/0008-5472.CAN-08-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB (2011) Immunosuppressive CD14+ HLA-DR(low)/- monocytes in B-cell non-Hodgkin lymphoma. Blood 117(3):872–881. doi:10.1182/blood-2010-05-283820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Solito S, Bronte V, Mandruzzato S (2011) Antigen specificity of immune suppression by myeloid-derived suppressor cells. J Leukoc Biol 90(1):31–36. doi:10.1189/jlb.0111021

    Article  CAS  PubMed  Google Scholar 

  42. Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166(9):5398–5406

    Article  CAS  PubMed  Google Scholar 

  43. Kusmartsev S, Nagaraj S, Gabrilovich DI (2005) Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175(7):4583–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999

    Article  CAS  PubMed  Google Scholar 

  45. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449. doi:10.1158/0008-5472.CAN-07-6621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rebe C, Ghiringhelli F (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Investig 120(2):457–471. doi:10.1172/JCI40483

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res Official J Am Assoc Cancer Res 16(18):4583–4594. doi:10.1158/1078-0432.CCR-10-0733

    Article  CAS  Google Scholar 

  48. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174(2):636–645

    Article  CAS  PubMed  Google Scholar 

  49. Nagaraj S, Nelson A, Youn JI, Cheng P, Quiceno D, Gabrilovich DI (2012) Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Res 72(4):928–938. doi:10.1158/0008-5472.CAN-11-2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194. doi:10.1016/j.ccr.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J, Fridlender ZG (2013) Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother CII 62(11):1745–1756. doi:10.1007/s00262-013-1476-9

    Article  CAS  PubMed  Google Scholar 

  52. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181. doi:10.1189/jlb.0311177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760

    CAS  PubMed  Google Scholar 

  54. Trellakis S, Bruderek K, Hutte J, Elian M, Hoffmann TK, Lang S, Brandau S (2013) Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immunity 19(3):328–336. doi:10.1177/1753425912463618

    Article  PubMed  CAS  Google Scholar 

  55. Elghetany MT (2002) Surface antigen changes during normal neutrophilic development: a critical review. Blood Cells Mol Dis 28(2):260–274

    Article  PubMed  Google Scholar 

  56. Choi J, Suh B, Ahn YO, Kim TM, Lee JO, Lee SH, Heo DS (2012) CD15+/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumour Biol J Int Soc Oncodevelopmental Biol Med 33(1):121–129. doi:10.1007/s13277-011-0254-6

    Article  CAS  Google Scholar 

  57. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Ann Rev Immunol 27:451–483. doi:10.1146/annurev.immunol.021908.132532

    Article  CAS  Google Scholar 

  58. de Goeje PL, Bezemer K, Heuvers ME, Dingemans AC, Groen HJ, Smit EF, Hoogsteden HC, Hendriks RW, Aerts JG, Hegmans JP (2015) Immunoglobulin-like transcript 3 is expressed by myeloid-derived suppressor cells and correlates with survival in patients with non-small cell lung cancer. Oncoimmunology 4(7):e1014242. doi:10.1080/2162402X.2015.1014242

    Article  PubMed  CAS  Google Scholar 

  59. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann NY Acad Sci 1319:47–65. doi:10.1111/nyas.12469

    Article  CAS  PubMed  Google Scholar 

  60. Abe F, Dafferner AJ, Donkor M, Westphal SN, Scholar EM, Solheim JC, Singh RK, Hoke TA, Talmadge JE (2010) Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice. Cancer Immunol Immunother CII 59(1):47–62. doi:10.1007/s00262-009-0719-2

    Article  CAS  PubMed  Google Scholar 

  61. Lu P, Yu B, Xu J (2012) Cucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancer. Cancer Biother Radiopharm 27(8):495–503. doi:10.1089/cbr.2012.1219

    Article  CAS  PubMed  Google Scholar 

  62. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203(12):2691–2702. doi:10.1084/jem.20061104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z, Wang H, Goodman S, Gourin CG, Ha PK, Fakhry C, Saunders J, Levine M, Tang M, Neuner G, Richmon JD, Blanco R, Agrawal N, Koch WM, Marur S, Weed DT, Serafini P, Borrello I (2015) Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res Official J Am Assoc Cancer Res 21(1):30–38. doi:10.1158/1078-0432.CCR-14-1716

    Article  CAS  Google Scholar 

  64. Noonan KA, Ghosh N, Rudraraju L, Bui M, Borrello I (2014) Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol Res 2(8):725–731. doi:10.1158/2326-6066.CIR-13-0213

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weed DT, Vella JL, Reis IM, De la Fuente AC, Gomez C, Sargi Z, Nazarian R, Califano J, Borrello I, Serafini P (2015) Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res Official J Am Assoc Cancer Res 21(1):39–48. doi:10.1158/1078-0432.CCR-14-1711

    Article  CAS  Google Scholar 

  66. Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P (2012) Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res 72(6):1373–1383. doi:10.1158/0008-5472.CAN-11-2772

    Article  CAS  PubMed  Google Scholar 

  67. Sinha P, Parker KH, Horn L, Ostrand-Rosenberg S (2012) Tumor-induced myeloid-derived suppressor cell function is independent of IFN-gamma and IL-4Ralpha. Eur J Immunol 42(8):2052–2059. doi:10.1002/eji.201142230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, Musiani P, Zanovello P, Bronte V (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102(11):4185–4190. doi:10.1073/pnas.0409783102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Thimmulappa RK, Fuchs RJ, Malhotra D, Scollick C, Traore K, Bream JH, Trush MA, Liby KT, Sporn MB, Kensler TW, Biswal S (2007) Preclinical evaluation of targeting the Nrf2 pathway by triterpenoids (CDDO-Im and CDDO-Me) for protection from LPS-induced inflammatory response and reactive oxygen species in human peripheral blood mononuclear cells and neutrophils. Antioxid Redox Sig 9(11):1963–1970. doi:10.1089/ars.2007.1745

    Article  CAS  Google Scholar 

  70. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee JH, Gabrilovich DI (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res Official J Am Assoc Cancer Res 16(6):1812–1823. doi:10.1158/1078-0432.CCR-09-3272

    Article  CAS  Google Scholar 

  71. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215(1):1–20. doi:10.1016/j.canlet.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  72. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939. doi:10.1084/jem.20050715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, Hegmans JP (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10:464. doi:10.1186/1471-2407-10-464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21(1):15–25. doi:10.1038/cdd.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res Official J Am Assoc Cancer Res 11(18):6713–6721. doi:10.1158/1078-0432.CCR-05-0883

    Article  CAS  Google Scholar 

  76. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rebe C, Ghiringhelli F (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70(8):3052–3061. doi:10.1158/0008-5472.CAN-09-3690

    Article  CAS  PubMed  Google Scholar 

  77. Chen J, Huang X, Huang G, Chen Y, Chen L, Song H (2012) Preconditioning chemotherapy with cisplatin enhances the antitumor activity of cytokine-induced killer cells in a murine melanoma model. Cancer Biother Radiopharm 27(3):210–220. doi:10.1089/cbr.2011.1116

    Article  CAS  PubMed  Google Scholar 

  78. Naiditch H, Shurin MR, Shurin GV (2011) Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunol Res 50(2–3):276–285. doi:10.1007/s12026-011-8213-2

    Article  CAS  PubMed  Google Scholar 

  79. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother CII 58(1):49–59. doi:10.1007/s00262-008-0523-4

    Article  CAS  PubMed  Google Scholar 

  80. Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, Harada M (2013) Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother CII 62(2):383–391. doi:10.1007/s00262-012-1343-0

    Article  CAS  PubMed  Google Scholar 

  81. Yanagimoto H, Mine T, Yamamoto K, Satoi S, Terakawa N, Takahashi K, Nakahara K, Honma S, Tanaka M, Mizoguchi J, Yamada A, Oka M, Kamiyama Y, Itoh K, Takai S (2007) Immunological evaluation of personalized peptide vaccination with gemcitabine for pancreatic cancer. Cancer Sci 98(4):605–611. doi:10.1111/j.1349-7006.2007.00429.x

    Article  CAS  PubMed  Google Scholar 

  82. Annels NE, Shaw VE, Gabitass RF, Billingham L, Corrie P, Eatock M, Valle J, Smith D, Wadsley J, Cunningham D, Pandha H, Neoptolemos JP, Middleton G (2014) The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunol Immunother CII 63(2):175–183. doi:10.1007/s00262-013-1502-y

    Article  CAS  PubMed  Google Scholar 

  83. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG, Rumboldt T, Yasir S, Jorda M, Garret-Mayer E, Avisar E, Slingerland J, Silva O, Welsh C, Schuhwerk K, Seo P, Pegram MD, Gluck S (2012) Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat 132(1):215–223. doi:10.1007/s10549-011-1889-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83(9):1032–1045. doi:10.4065/83.9.1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67(23):11438–11446. doi:10.1158/0008-5472.CAN-07-1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, Gillanders WE, Linehan DC, Goedegebuure P (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother CII 61(9):1373–1385. doi:10.1007/s00262-011-1178-0

    Article  CAS  PubMed  Google Scholar 

  87. Sanford DE, Porembka MR, Panni RZ, Mitchem JB, Belt BA, Plambeck-Suess SM, Lin G, Denardo DG, Fields RC, Hawkins WG, Strasberg SM, Lockhart AC, Wang-Gillam A, Goedegebuure SP, Linehan DC (2013) A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma. J Cancer Ther 4(3):797–803. doi:10.4236/jct.2013.43096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Gnant M, Mlineritsch B, Stoeger H, Luschin-Ebengreuth G, Heck D, Menzel C, Jakesz R, Seifert M, Hubalek M, Pristauz G, Bauernhofer T, Eidtmann H, Eiermann W, Steger G, Kwasny W, Dubsky P, Hochreiner G, Forsthuber EP, Fesl C, Greil R, Austrian B, Colorectal Cancer Study Group VA (2011) Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol 12 (7):631–641. doi:10.1016/S1470-2045(11)70122-X

    Google Scholar 

  89. Eidtmann H, de Boer R, Bundred N, Llombart-Cussac A, Davidson N, Neven P, von Minckwitz G, Miller J, Schenk N, Coleman R (2010) Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST study. Ann Oncol Official J Eur Soc Med Oncol ESMO 21(11):2188–2194. doi:10.1093/annonc/mdq217

    Article  CAS  Google Scholar 

  90. Coleman RMG, Paterson A, Powles T, von Minckwitz G, Pritchard K, Bergh J, Bliss J, Gralow J, Anderson S, Evans V, Pan H, Bradley R, Davies C, and Gray R (2013) Abstract S4-07: Effects of bisphosphonate treatment on recurrence and cause-specific mortality in women with early breast cancer: a meta-analysis of individual patient data from randomised trials. Cancer Res 73

    Google Scholar 

  91. Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, Gil M, Houston SJ, Grieve RJ, Barrett-Lee PJ, Ritchie D, Pugh J, Gaunt C, Rea U, Peterson J, Davies C, Hiley V, Gregory W, Bell R, Investigators A (2011) Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med 365(15):1396–1405. doi:10.1056/NEJMoa1105195

    Article  CAS  PubMed  Google Scholar 

  92. Nienhuis HH, Gaykema SB, Timmer-Bosscha H, Jalving M, Brouwers AH, Lub-de Hooge MN, van der Vegt B, Overmoyer B, de Vries EG, Schroder CP (2015) Targeting breast cancer through its microenvironment: current status of preclinical and clinical research in finding relevant targets. Pharmacol Ther 147:63–79. doi:10.1016/j.pharmthera.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  93. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. doi:10.1084/jem.20080132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73(9):2782–2794. doi:10.1158/0008-5472.CAN-12-3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Waight JD, Hu Q, Miller A, Liu S, Abrams SI (2011) Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS ONE 6(11):e27690. doi:10.1371/journal.pone.0027690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835. doi:10.1016/j.ccr.2012.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111(1):219–228. doi:10.1182/blood-2007-04-086835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64(17):6337–6343. doi:10.1158/0008-5472.CAN-04-0757

    Article  CAS  PubMed  Google Scholar 

  100. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123(1):39–49. doi:10.1007/s10549-009-0622-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol Official J Am Soc Clin Oncol 25(18):2546–2553. doi:10.1200/JCO.2006.08.5829

    Article  CAS  Google Scholar 

  102. Terme M, Colussi O, Marcheteau E, Tanchot C, Tartour E, Taieb J (2012) Modulation of immunity by antiangiogenic molecules in cancer. Clin Dev Immunol 2012:492920. doi:10.1155/2012/492920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res Official J Am Assoc Cancer Res 15(6):2148–2157. doi:10.1158/1078-0432.CCR-08-1332

    Article  CAS  Google Scholar 

  104. Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI (2007) Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res Official J Am Assoc Cancer Res 13(16):4840–4848. doi:10.1158/1078-0432.CCR-07-0409

    Article  CAS  Google Scholar 

  105. Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother CII 57(8):1115–1124. doi:10.1007/s00262-007-0441-x

    Article  CAS  PubMed  Google Scholar 

  106. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, Giebel B, Schadendorf D, Paschen A (2013) Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer 133(7):1653–1663. doi:10.1002/ijc.28168

    Article  CAS  PubMed  Google Scholar 

  107. Najjar YG, Finke JH (2013) Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front Oncol 3:49. doi:10.3389/fonc.2013.00049

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63(15):4441–4449

    CAS  PubMed  Google Scholar 

  109. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res Official J Am Assoc Cancer Res 14(24):8270–8278. doi:10.1158/1078-0432.CCR-08-0165

    Article  CAS  Google Scholar 

  110. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother CII 62(5):909–918. doi:10.1007/s00262-013-1396-8

    Article  CAS  PubMed  Google Scholar 

  111. Kulbersh JS, Day TA, Gillespie MB, Young MR (2009) 1alpha,25-Dihydroxyvitamin D(3) to skew intratumoral levels of immune inhibitory CD34(+) progenitor cells into dendritic cells. Otolaryngol Head Neck Surg Official J Am Acad Otolaryngol Head Neck Surg 140(2):235–240. doi:10.1016/j.otohns.2008.11.011

    Google Scholar 

  112. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118(20):5498–5505. doi:10.1182/blood-2011-07-365825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66(18):9299–9307. doi:10.1158/0008-5472.CAN-06-1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lathers DM, Clark JI, Achille NJ, Young MR (2004) Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother CII 53(5):422–430. doi:10.1007/s00262-003-0459-7

    Article  CAS  PubMed  Google Scholar 

  115. Young MR, Lathers DM (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol 21(4):241–252

    Article  CAS  PubMed  Google Scholar 

  116. Young MR, Ihm J, Lozano Y, Wright MA, Prechel MM (1995) Treating tumor-bearing mice with vitamin D3 diminishes tumor-induced myelopoiesis and associated immunosuppression, and reduces tumor metastasis and recurrence. Cancer Immunol Immunother CII 41(1):37–45

    CAS  PubMed  Google Scholar 

  117. Umansky V, Sevko A (2012) Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunol Immunother CII 61(2):275–282. doi:10.1007/s00262-011-1164-6

    Article  CAS  PubMed  Google Scholar 

  118. Pratima Sinha VKC, Stephanie K. Bunt, Steven M. Albelda and Suzanne Ostrand-Rosenberg (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179(2):977–983

    Google Scholar 

  119. Kusmartsev S, Eruslanov E, Kubler H, Tseng T, Sakai Y, Su Z, Kaliberov S, Heiser A, Rosser C, Dahm P, Siemann D, Vieweg J (2008) Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol 181(1):346–353

    Article  CAS  PubMed  Google Scholar 

  120. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+ CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35. doi:10.1016/j.ccr.2007.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van Cruijsen H, van der Veldt AA, Vroling L, Oosterhoff D, Broxterman HJ, Scheper RJ, Giaccone G, Haanen JB, van den Eertwegh AJ, Boven E, Hoekman K, de Gruijl TD (2008) Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin Cancer Res Official J Am Assoc Cancer Res 14(18):5884–5892. doi:10.1158/1078-0432.CCR-08-0656

    Article  CAS  Google Scholar 

  122. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831. doi:10.1038/nature06348

    Article  CAS  PubMed  Google Scholar 

  123. Collazo MM, Paraiso KH, Park MY, Hazen AL, Kerr WG (2012) Lineage extrinsic and intrinsic control of immunoregulatory cell numbers by SHIP. Eur J Immunol 42(7):1785–1795. doi:10.1002/eji.201142092

    Article  CAS  PubMed  Google Scholar 

  124. Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106(16):6742–6747. doi:10.1073/pnas.0902280106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. doi:10.1158/2159-8274.CD-10-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fernandez A, Mesa C, Marigo I, Dolcetti L, Clavell M, Oliver L, Fernandez LE, Bronte V (2011) Inhibition of tumor-induced myeloid-derived suppressor cell function by a nanoparticulated adjuvant. J Immunol 186(1):264–274. doi:10.4049/jimmunol.1001465

    Article  CAS  PubMed  Google Scholar 

  127. Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L, Pienta KJ (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 67(19):9417–9424. doi:10.1158/0008-5472.CAN-07-1286

    Article  CAS  PubMed  Google Scholar 

  128. Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, Leonardi AJ, Morgan RA, Wang E, Marincola FM, Trinchieri G, Rosenberg SA, Restifo NP (2011) IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Investig 121(12):4746–4757. doi:10.1172/JCI58814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chmielewski M, Kopecky C, Hombach AA, Abken H (2011) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17):5697–5706. doi:10.1158/0008-5472.CAN-11-0103

    Article  CAS  PubMed  Google Scholar 

  130. Weiss JM, Ridnour LA, Back T, Hussain SP, He P, Maciag AE, Keefer LK, Murphy WJ, Harris CC, Wink DA, Wiltrout RH (2010) Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy. J Exp Med 207(11):2455–2467. doi:10.1084/jem.20100670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616. doi:10.1126/science.1198443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Akerud P, De Mol M, Salomaki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44. doi:10.1016/j.ccr.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  133. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268. doi:10.1084/jem.20080108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Davies GF, Khandelwal RL, Wu L, Juurlink BH, Roesler WJ (2001) Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: a peroxisome proliferator-activated receptor-gamma (PPARgamma)-independent, antioxidant-related mechanism. Biochem Pharmacol 62(8):1071–1079

    Article  CAS  PubMed  Google Scholar 

  135. Sumida K, Wakita D, Narita Y, Masuko K, Terada S, Watanabe K, Satoh T, Kitamura H, Nishimura T (2012) Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur J Immunol 42(8):2060–2072. doi:10.1002/eji.201142335

    Article  CAS  PubMed  Google Scholar 

  136. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Ruttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859. doi:10.1016/j.ccr.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  137. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother CII 63(3):247–257. doi:10.1007/s00262-013-1508-5

    Article  CAS  PubMed  Google Scholar 

  138. Gorgun G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, White RE, Singh A, Ohguchi H, Suzuki R, Kikuchi S, Harada T, Hideshima T, Tai YT, Laubach JP, Raje N, Magrangeas F, Minvielle S, Avet-Loiseau H, Munshi NC, Dorfman DM, Richardson PG, Anderson KC (2015) Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res Official J Am Assoc Cancer Res 21(20):4607–4618. doi:10.1158/1078-0432.CCR-15-0200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Talmadge .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Talmadge, J.E. (2016). Controversies in Neoplastic Myeloplasia. In: Myeloid-Derived Suppressor Cells and Cancer. SpringerBriefs in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-26821-7_1

Download citation

Publish with us

Policies and ethics