Skip to main content

Advertisement

Log in

The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In pre-clinical models, the only two chemotherapy drugs which have been demonstrated to directly reduce the number of myeloid-derived suppressor cells (MDSCs) are gemcitabine and 5-fluorouracil. Here we analyze the dynamics of MDSCs, phenotyped as Lin-DR-CD11b+, in patients with advanced pancreatic cancer receiving the combination of gemcitabine and capecitabine, a 5-FU pro-drug. We found no evidence that gemcitabine and capecitabine directly reduce MDSC% in patients. Gemcitabine and capecitabine reduced MDSCs in 42 % of patients (n = 19) and MDSC% fell in only 3/9 patients with above-median baseline MDSCs. In 5/8 patients with minimal tumour volume change on treatment, the MDSC% went up: increases in MDSC% in these patients appeared to correlate with sustained cancer-related inflammatory cytokine upregulation. In a separate cohort of 21 patients treated with gemcitabine and capecitabine together with concurrently administered GV1001 vaccine with adjuvant GM-CSF, the MDSC% fell in 18/21 patients and there was a significant difference in the trajectory of MDSCs between those receiving GV1001 and GM-CSF in combination with chemotherapy and those receiving chemotherapy alone. Thus, there was no evidence that the addition of low-dose adjuvant GM-CSF increased Lin-DR-CD11b+ MDSC in patients receiving combination chemoimmunotherapy. 9/21 patients developed an immune response to GV1001 and the MDSCs fell in 8 of these 9 patients, 6 of whom had above-median pre-vaccination MDSC levels. A high pre-vaccination MDSC% does not preclude the development of immunity to a tumour-associated antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A et al (2003) IL-4- induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278

    CAS  PubMed  Google Scholar 

  2. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid- derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E et al (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Middleton GW, Valle JW, Wadsley J, Propper D, Coxon FY, Ross PJ et al (2013) A phase III randomized trial of chemoimmunotherapy comprising gemcitabine and capecitabine with or without telomerase vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer. J Clin Oncol 31(suppl; abstr LBA4004)

  8. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  CAS  PubMed  Google Scholar 

  9. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al (2010) 5- Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    Article  CAS  PubMed  Google Scholar 

  10. Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 69:7747–7755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero MC, Mariani L, Parmiani G, Rivoltini L et al (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553

    Article  CAS  PubMed  Google Scholar 

  12. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  13. Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL (2012) Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods 381(1–2):14–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G, Garrett-Mayer E, Montero AJ, Bronte V, Mandruzzato S (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265

    Article  CAS  PubMed  Google Scholar 

  16. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019–10026

    Article  CAS  PubMed  Google Scholar 

  17. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35

    Article  CAS  PubMed  Google Scholar 

  18. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185(4):2273–2284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by BRIGHT: Better Research Into Gastrointestinal cancer Health and Treatment, registered charity number 1064857. The TeloVac Trial was funded by Cancer Research UK and KAEL-Gemvax.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Middleton.

Additional information

Nicola E. Annels and Victoria E. Shaw have contributed jointly to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annels, N.E., Shaw, V.E., Gabitass, R.F. et al. The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunol Immunother 63, 175–183 (2014). https://doi.org/10.1007/s00262-013-1502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1502-y

Keywords

Navigation