Skip to main content

Advertisement

Log in

Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The role and characteristics of tumor-associated neutrophils (TAN) in cancer are poorly defined. We have recently shown that TAN can have anti-tumorigenic (N1) or pro-tumorigenic (N2) functions. An interesting unanswered question is how the phenotype of TAN is influenced by the ongoing evolvement of tumor microenvironment. We therefore studied the phenotype and effects of TAN at different time points during tumor progression. We used two models of murine tumor cancer cell lines—Lewis lung carcinoma (LLC) and AB12 (mesothelioma). Neutrophils were studied at early and late stages and compared to each other and to neutrophils from bone marrow/periphery of naïve mice. Although there was no difference in the number of neutrophils entering the tumor, we found that at early stages of tumor development, neutrophils were almost exclusively at the periphery of the tumor. Only at later stages, neutrophils were also found scattered among the tumor cells. We further found that TAN from early tumors are more cytotoxic toward tumor cells and produce higher levels of TNF-α, NO and H2O2. In established tumors, these functions are down-regulated and TAN acquire a more pro-tumorigenic phenotype. In line with this phenotype, only depletion of neutrophils at later stages of tumor development inhibited tumor growth, possibly due to their central location in the tumor. Our work adds another important layer to the understanding of neutrophils in cancer by further characterizing the changes in TAN during time. Additional research on the functional role of TAN and differences between subsets of TAN is currently underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715. doi:10.1056/NEJMra072739

    Article  PubMed  CAS  Google Scholar 

  2. Costello RT, Gastaut JA, Olive D (1999) Tumor escape from immune surveillance. Arch Immunol Ther Exp (Warsz) 47(2):83–88

    CAS  Google Scholar 

  3. Whiteside TL (2009) Tricks tumors use to escape from immune control. Oral Oncol 45(10):e119–e123. doi:10.1016/j.oraloncology.2009.03.006

    Article  PubMed  CAS  Google Scholar 

  4. Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V, Horng W, Fridlender G, Bayuh R, Worthen GS, Albelda SM (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7(2):e31524. doi:10.1371/journal.pone.0031524

    Article  PubMed  CAS  Google Scholar 

  5. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  PubMed  CAS  Google Scholar 

  6. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. doi:10.1189/jlb.0609385

    Article  PubMed  CAS  Google Scholar 

  7. Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431(7007):405–406. doi:10.1038/431405a431405a

    Article  PubMed  CAS  Google Scholar 

  8. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116(8):2132–2141. doi:10.1172/JCI27648

    Article  PubMed  CAS  Google Scholar 

  9. Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180(4):2011–2017

    PubMed  CAS  Google Scholar 

  10. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. doi:10.1158/0008-5472.CAN-05-4005

    Article  PubMed  CAS  Google Scholar 

  11. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. doi:10.1146/annurev.immunol.021908.132532

    Article  PubMed  CAS  Google Scholar 

  12. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  PubMed  CAS  Google Scholar 

  13. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, Bottazzi B, Colombo MP, Mantovani A, Sica A (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66(23):11432–11440. doi:10.1158/0008-5472.CAN-06-1867

    Article  PubMed  CAS  Google Scholar 

  14. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarized population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727. doi:10.1016/j.ejca.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  15. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237. doi:10.1016/j.coi.2010.01.009

    Article  PubMed  CAS  Google Scholar 

  16. Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181(1):435–440

    Article  PubMed  CAS  Google Scholar 

  17. Shojaei F, Singh M, Thompson JD, Ferrara N (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci USA 105(7):2640–2645. doi:10.1073/pnas.0712185105

    Article  PubMed  CAS  Google Scholar 

  18. Tazawa H, Okada F, Kobayashi T, Tada M, Mori Y, Une Y, Sendo F, Kobayashi M, Hosokawa M (2003) Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. Am J Pathol 163(6):2221–2232. doi:10.1016/S0002-9440(10)63580-8

    Article  PubMed  CAS  Google Scholar 

  19. Colombo MP, Lombardi L, Stoppacciaro A, Melani C, Parenza M, Bottazzi B, Parmiani G (1992) Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo. Neutrophils discriminate between G-CSF-producing and G-CSF-nonproducing tumor cells. J Immunol 149(1):113–119

    PubMed  CAS  Google Scholar 

  20. Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, Pettenati MJ, Sanders AM, Weir HM, Du W, Kim J, Simpson AJ, Old LJ, Cui Z (2006) Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA 103(20):7753–7758. doi:10.1073/pnas.0602382103

    Article  PubMed  CAS  Google Scholar 

  21. Di Carlo E, Forni G, Lollini P, Colombo MP, Modesti A, Musiani P (2001) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97(2):339–345

    Article  PubMed  Google Scholar 

  22. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194. doi:10.1016/j.ccr.2009.06.017

    Article  PubMed  CAS  Google Scholar 

  23. Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120(4):1151–1164. doi:10.1172/JCI37223

    Article  PubMed  CAS  Google Scholar 

  24. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20(3):300–314. doi:10.1016/j.ccr.2011.08.012

    Article  PubMed  CAS  Google Scholar 

  25. Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66(11):5527–5536. doi:10.1158/0008-5472.CAN-05-4128

    Article  PubMed  CAS  Google Scholar 

  26. Kim S, Buchlis G, Fridlender ZG, Sun J, Kapoor V, Cheng G, Haas A, Cheung HK, Zhang X, Corbley M, Kaiser LR, Ling L, Albelda SM (2008) Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res 68(24):10247–10256. doi:10.1158/0008-5472.CAN-08-1494

    Article  PubMed  CAS  Google Scholar 

  27. Basit A, Reutershan J, Morris MA, Solga M, Rose CE Jr, Ley K (2006) ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol Lung Cell Mol Physiol 291(2):L200–L207. doi:10.1152/ajplung.0.0346.2005

    Article  PubMed  CAS  Google Scholar 

  28. Piccard H, Muschel RJ, Opdenakker G (2012) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol 82(3):296–309. doi:10.1016/j.critrevonc.2011.06.004

    Article  PubMed  CAS  Google Scholar 

  29. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  PubMed  CAS  Google Scholar 

  30. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122. doi:10.1182/blood-2005-01-0428

    Article  PubMed  CAS  Google Scholar 

  31. Sugai H, Kono K, Takahashi A, Ichihara F, Kawaida H, Fujii H, Matsumoto Y (2004) Characteristic alteration of monocytes with increased intracellular IL-10 and IL-12 in patients with advanced-stage gastric cancer. J Surg Res 116(2):277–287. doi:10.1016/j.jss.2003.10.008

    Article  PubMed  CAS  Google Scholar 

  32. Tsai CS, Chen FH, Wang CC, Huang HL, Jung SM, Wu CJ, Lee CC, McBride WH, Chiang CS, Hong JH (2007) Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys 68(2):499–507. doi:10.1016/j.ijrobp.2007.01.041

    Article  PubMed  CAS  Google Scholar 

  33. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531. doi:10.1038/nri3024

    Article  PubMed  CAS  Google Scholar 

  34. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949–955. doi:10.1093/carcin/bgs123

    Article  PubMed  CAS  Google Scholar 

  35. Beutler BA (1999) The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 57:16–21

    PubMed  CAS  Google Scholar 

  36. Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13(2):135–141

    Article  PubMed  CAS  Google Scholar 

  37. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759. doi:10.1038/nri1703

    Article  PubMed  CAS  Google Scholar 

  38. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124(4):823–835. doi:10.1016/j.cell.2006.02.016

    Article  PubMed  CAS  Google Scholar 

  39. van Gisbergen KP, Geijtenbeek TB, van Kooyk Y (2005) Close encounters of neutrophils and DCs. Trends Immunol 26(12):626–631. doi:10.1016/j.it.2005.09.007

    Article  PubMed  Google Scholar 

  40. Dallegri F, Patrone F, Frumento G, Sacchetti C (1984) Antibody-dependent killing of tumor cells by polymorphonuclear leukocytes. Involvement of oxidative and nonoxidative mechanisms. J Natl Cancer Inst 73(2):331–339

    PubMed  CAS  Google Scholar 

  41. Gerrard TL, Cohen DJ, Kaplan AM (1981) Human neutrophil-mediated cytotoxicity to tumor cells. J Natl Cancer Inst 66(3):483–488

    PubMed  CAS  Google Scholar 

  42. Katano M, Torisu M (1982) Neutrophil-mediated tumor cell destruction in cancer ascites. Cancer 50(1):62–68

    Article  PubMed  CAS  Google Scholar 

  43. Dallegri F, Ottonello L, Ballestrero A, Dapino P, Ferrando F, Patrone F, Sacchetti C (1991) Tumor cell lysis by activated human neutrophils: analysis of neutrophil-delivered oxidative attack and role of leukocyte function-associated antigen 1. Inflammation 15(1):15–30

    Article  PubMed  CAS  Google Scholar 

  44. Lichtenstein A, Seelig M, Berek J, Zighelboim J (1989) Human neutrophil-mediated lysis of ovarian cancer cells. Blood 74(2):805–809

    PubMed  CAS  Google Scholar 

  45. Zivkovic M, Poljak-Blazi M, Egger G, Sunjic SB, Schaur RJ, Zarkovic N (2005) Oxidative burst and anticancer activities of rat neutrophils. BioFactors 24(1–4):305–312

    Article  PubMed  CAS  Google Scholar 

  46. Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, Lopez-Otin C (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35(3):252–257. doi:10.1038/ng1249

    Article  PubMed  CAS  Google Scholar 

  47. Kousis PC, Henderson BW, Maier PG, Gollnick SO (2007) Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res 67(21):10501–10510. doi:10.1158/0008-5472.CAN-07-1778

    Article  PubMed  CAS  Google Scholar 

  48. Stoppacciaro A, Melani C, Parenza M, Mastracchio A, Bassi C, Baroni C, Parmiani G, Colombo MP (1993) Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma. J Exp Med 178(1):151–161

    Article  PubMed  CAS  Google Scholar 

  49. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103(33):12493–12498. doi:10.1073/pnas.0601807103

    Article  PubMed  CAS  Google Scholar 

  50. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE (2008) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83(1):64–70. doi:10.1189/jlb.0407247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Research Career Development Award from the Israel Cancer Research Fund, and partly by The Israel Cancer Association (Grant 20110103-B) and by the joint research fund of the Hebrew University and Hadassah Medical Center (Jerusalem, Israel).

Conflict of interest

There are no financial or other interests that might be construed as conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Gregorio Fridlender.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishalian, I., Bayuh, R., Levy, L. et al. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother 62, 1745–1756 (2013). https://doi.org/10.1007/s00262-013-1476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1476-9

Keywords

Navigation