Skip to main content

The Importance of Phytohormones and Microbes in Biofertilizers

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

Plant growth is dependent on meristems where cell proliferations (cell division and growth) give rise to new plant structures and allow the plant to increase in size. We provided scientific linkages and evidence to show that the growth promoting factors in biofertilizers regulating cell proliferation and ultimately modulating plant growth and development are phytohormones. The known biological functions of phytohormones (cytokinins, auxins, gibberellins, etc.) are in tandem with the observed physiological characteristics and crop yield of plants. When light, water and mineral nutrients are not limiting, phytohormones especially cytokinins, in biofertilizers help to drive plant growth by progressing faster through the various plant cell cycle checkpoints leading to the production of more cells. In the soil matrices, PGPRs (Plant Growth Promoting Rhizobacteria) have the ability to promote plant growth via various mechanisms such as nitrogen fixation, phosphorus and zinc solubilization. Some PGPRs secrete phytohormones, especially cytokinins, and can be cultured and developed into a biofertilizer. In the near future, a hybrid approach of combining organic and conventional fertilization regimes will be the likely scenario as we have achieved a better understanding of plant growth and development through the regulatory controls on the cell proliferation processes by phytohormones and mineral nutrients delivered by fertilizers. The futuristic green biofertilizer should come in the form of granules in which the active plant growth promoting and soil improving substances and/or suitable microbes, with carefully selected mineral nutrients, are embedded in the packing materials giving slow and sustained release over a desired period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58

    Article  Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspectives. J King Saud Univ—Sci 26:1–20

    Article  Google Scholar 

  • Akhkha A, Kusel J, Kennedy M, Curtis R (2002) Effects of phytohormones on the surfaces of plant-parasitic nematodes. Parasitology 125:165–175

    Article  CAS  PubMed  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Pl Biol 66:161–186

    Article  CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    Article  CAS  Google Scholar 

  • Arancon NQ, Edwards CA, Bierman P, Welch C, Metzger JD (2004) Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour Technol 93:145–153

    Article  CAS  PubMed  Google Scholar 

  • Aremu AO, Strik WA, Kulkarni MG, Tarkowská D, Turečková V, Gruz J, Šubrtová M, Pěnčík A, Novák O, Doležal K, Strnad M, Van Staden M (2015) Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regul 75:483–492

    Article  CAS  Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Arthur GD, Jäger AK, Van Staden J (2001) Uptake of [3H]DHZ by tomato seedlings. S Afr J Bot 67:661–666

    Article  CAS  Google Scholar 

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14

    Article  CAS  PubMed  Google Scholar 

  • Bangerth F, Li CJ, Gruber J (2000) Mutual interaction of auxin and cytokinins in regulating correlative dominance. Plant Growth Regul 32:205–217

    Article  CAS  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam LJ (ed) Plant-associated bacteria. Springer, Netherlands, pp 1–56

    Chapter  Google Scholar 

  • Bennett T, Leyser O (2006) Something on the side: axillary meristems and plant development. Plant Mol Biol 60:843–854

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8:2332–2343

    Article  Google Scholar 

  • Binns AN (1994) Cytokinin accumulation and action: biochemical, genetic, and molecular approaches. Annu Rev Plant Biol 45:173–196

    Article  CAS  Google Scholar 

  • Bird AF, Loveys BR (1980) The involvement of cytokinins in a host–parasite relationship between the tomato (Lycopersicon esculentum) and a nematode (Meloidogyne javanica). Parasitology 80:497–505

    Article  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burkiewicz K (1987) Active substances in the media after algae cultivation. Acta Physiol Plant 9:211–217

    CAS  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+ -ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Červená K, Lyčková B, Kučerová R (2013) Vermicompost—an effective natural fertilizer. In: Proceedings in EIIC-The 2nd electronic international interdisciplinary conference. http://www.eiic.cz/archive/?vid=1&aid=3&kid=20201-110&q=f1. Accessed 13 Nov 2014

  • Chandramohan A, Sivasankar V, Ravichandran C, Sakthivel R (2013) A probe on the status of microorganisms in the air, soil and solid waste samples of Ariyamangalam dumping site at Tiruchirappalli district, South India. In: Velu RK (ed) Microbiological research in agroecosystem management. Springer, India, pp 1–9

    Chapter  Google Scholar 

  • Chaoui HI, Zibilske LM, Ohno T (2003) Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem 35:295–302

    Article  CAS  Google Scholar 

  • Chen CM, Ert JR, Leisner SM, Chang CC (1985) Localization of cytokinin biosynthetic sites in pea plants and carrot roots. Plant Physiol 78:510–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Clapp CE, Magen H (2004) Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Sci Plant Nutr 50:1089–1095

    Article  CAS  Google Scholar 

  • Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizers for crop growth and soil fertility. In: International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, vol 16. Land Development Department Bangkok, Thailand, p 20

    Google Scholar 

  • Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Crafts CB, Miller CO (1974) Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol 54:586–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford NM, Glass AD (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol 48:355–381

    Article  CAS  Google Scholar 

  • Crespi M, Messens E, Caplan AB, Van Montagu M, Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J 11:795–804

    Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, pp 169–198

    Chapter  Google Scholar 

  • Datta JK, Banerjee A, Sikdar MS, Gupta S, Mondal NK (2009) Impact of combined exposure of chemical, fertilizer, bio-fertilizer and compost on growth, physiology and productivity of Brassica campestries in old alluvial soil. J Environ Biol 30:797–800

    CAS  PubMed  Google Scholar 

  • De Meutter J, Tytgat T, Witters E, Gheysen G, Van Onckelen H, Gheysen G (2003) Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Mol Plant Pathol 4:271–277

    Article  PubMed  Google Scholar 

  • Den Boer BG, Murray JA (2000) Triggering the cell cycle in plants. Trends Cell Biol 10:245–250

    Article  Google Scholar 

  • Dewitte W, Murray JA (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Döbereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards CA, Arancon NQ, Sherman R (2010) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press, Boca Raton

    Google Scholar 

  • Emery RJN, Atkins CA (2002) Roots and cytokinins. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots—the hidden half. Marcel Dekker Inc, New York, pp 417–434

    Google Scholar 

  • FAO/WHO (2015) What is organic agriculture. http://www.fao.org/organicag/oa-faq/oa-faq1/en/. Accessed 3 Jan 2015

  • Francis D, Sorrell DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12

    Article  CAS  Google Scholar 

  • Frank M, Schmülling T (1999) Cytokinin cycles cells. Trends Plant Sci 4:243–244

    Article  CAS  PubMed  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  PubMed  CAS  Google Scholar 

  • Fricke K, Vogtmann H (1993) Quality of source separated compost. BioCycle 34:64–70

    CAS  Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    Article  CAS  PubMed  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, part 1: the technology, 2nd edn. Exegetics Ltd, Edington

    Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture-handbook and directory of commercial laboratories. Exegetics Ltd, Edington

    Google Scholar 

  • Gersani M, Kende H (1982) Studies on cytokinin-stimulated translocation in isolated bean leaves. J Plant Growth Regul 1:161–171

    CAS  Google Scholar 

  • Gharib FA, Moussa LA, Massoud ON (2008) Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. Int J Agr Biol 10:381–382

    Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signalling. Curr Opin Plant Biol 8:93–102

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolin MC, Strnad M, Sánchez-Díaz M (1996) Root cytokinins, acid phosphatase and nodule activity in drought-stressed mycorrhizal or nitrogen-fixing alfalfa plants. J Exp Bot 47:683–686

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015) The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. SpringerPlus 4:31. doi:10.1186/s40064-015-0811-3

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grbić V, Bleecker AB (2000) Axillary meristem development in Arabidopsis thaliana. Plant J 21:215–223

    Article  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Herbert RJ, Vilhar B, Evett C, Orchard CB, Rogers HJ, Davies MS, Francis D (2001) Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line. J Exp Bot 52:1615–1623

    CAS  PubMed  Google Scholar 

  • Hernández A, Castillo H, Ojeda D, Arras A, López J, Sánchez E (2010) Effect of vermicompost and compost on lettuce production. Chil J Agr Res 70:583–589

    Article  Google Scholar 

  • Hsieh SC (2005) Organic farming for sustainable agriculture in Asia with special reference to Taiwan experience. Research Institute of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan. http://www.agnet.org/htmlarea_file/library/20110801133519/eb558.pdf. Accessed 23 Oct 2014

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459

    Article  CAS  PubMed  Google Scholar 

  • Huala E, Sussex IM (1993) Determination and cell interactions in reproductive meristems. Pl Cell 5:1157–1165

    Article  Google Scholar 

  • Hwang I, Sakakibara H (2006) Cytokinin biosynthesis and perception. Physiol Plant 126:528–538

    Google Scholar 

  • International Humic Substances Society (2007) What are humic substances? http://www.humicsubstances.org/whatarehs.html. Accessed 24 Oct 2014

  • Inzé D (2003) Why should we study the plant cell cycle? J Exp Bot 54:1125–1126

    Article  PubMed  Google Scholar 

  • Jeng AS, Haraldsen TK, Grønlund A, Pedersen PA (2006) Meat and bone meal as nitrogen and phosphorus fertilizer to cereals and rye grass. Nutr Cycl Agroecosys 76:183–191

    Article  Google Scholar 

  • Johnstone DB (1967) Isolation of Azotobacter insignis from fresh water. Ecology 48:671–672

    Article  Google Scholar 

  • Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol 42:677–685

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto T (2003) Biosynthesis of cytokinins. J Plant Res 116:233–239

    Article  CAS  PubMed  Google Scholar 

  • Kamínek M, Motyka V, Vaňková R (1997) Regulation of cytokinins content in plant cells. Physiol Plant 101:689–700

    Article  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549

    Article  CAS  PubMed  Google Scholar 

  • Koning RE (1994) Cell cycle. Plant Physiology Information Website. http://plantphys.info/plant_physiology/cellcycle.shtml. Accessed 24 Oct 2014

  • Kraigher H, Grayling A, Wang TL, Hanke DE (1991) Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochem 30:2249–2254

    Article  CAS  Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    Article  CAS  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344

    Article  CAS  PubMed  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz’mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Courtois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta 221:1–4

    Article  CAS  PubMed  Google Scholar 

  • Leopold AC, Kawase M (1964) Benzyladenine effects on bean leaf growth and senescence. Am J Bot 51:294–298

    Article  CAS  Google Scholar 

  • Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Ann Rev Plant Physiol 34:163–197

    Article  CAS  Google Scholar 

  • Li P, Chen L, Zhou Y, Xia X, Shi K, Chen Z, Yu J (2013) Brassinosteroids-induced systemic stress tolerance was associated with increased transcripts of several defence-related genes in the phloem in Cucumis sativus. PLoS ONE 8:e66582. doi:10.1371/journal.pone.0066582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey K, Casson S, Chilley P (2002) Peptides: new signalling molecules in plants. Trends Plant Sci 7:78–83

    Article  CAS  PubMed  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214

    Article  CAS  PubMed  Google Scholar 

  • Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma QH, Lin ZB, Fu DZ (2002) Increased seed cytokinin levels in transgenic tobacco influence embryo and seedling development. Funct Plant Biol 29:1107–1113

    Article  CAS  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytol 2:42–54

    Google Scholar 

  • Maksimov IV, Abizgil’Dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biot 98:6599–6607

    Article  CAS  Google Scholar 

  • Mapes CC, Davies PJ (2001) Cytokinins in the ball gall of Solidago altissima and in the gall forming larvae of Eurosta solidaginis. New Phytol 151:203–212

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martínez GA, Chaves AR, Añón MC (1994) Effect of gibberellic acid on ripening of strawberry fruits (Fragaria annanassa Duch.). J Plant Growth Regul 13:87–91

    Article  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils 30:433–439

    Article  CAS  Google Scholar 

  • Matsubayashi Y (2014) Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol 65:385–413

    Article  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674

    Article  CAS  PubMed  Google Scholar 

  • Mauk CS, Noodén LD (1992) Regulation of mineral redistribution in pod-bearing soybean explants. J Exp Bot 43:1429–1440

    Article  CAS  Google Scholar 

  • McDermott J, Meilan R, Thornburg R (1996) Plant–insect interactions: the hackberry nipple gall. World Wide Web J Biol 2 http://epress.com/w3jbio/vol2/mcdermott/mcdermott.html

  • Mehboob I, Naveed M, Ahmad Z (2009) Rhizobial association with non-legumes: Mechanisms and applications. Crit Rev Plant Sci 28:432–456

    Article  CAS  Google Scholar 

  • Mishra DJ, Singh R, Mishra UK, Kumar SS (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Mok MC (1994) Cytokinins and plant development–an overview. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 155–166

    Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Biol 52:89–118

    Article  CAS  Google Scholar 

  • Mok MC, Martin RC, Mok DW (2000) Cytokinins: biosynthesis, metabolism and perception. In Vitro Cellular Dev-Plant 36:102–107

    Article  CAS  Google Scholar 

  • Müssig C, Lisso J, Coll-Garcia D, Altmann T (2006) Molecular analysis of brassinosteroid action. Plant Biol 8:291–296

    Article  PubMed  CAS  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma PVSRN, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critl Rev Biotechnol 30:231–241

    Article  CAS  Google Scholar 

  • Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol 149:863–873

    Google Scholar 

  • Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:7095–7100

    Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    Article  CAS  PubMed  Google Scholar 

  • Ng PP, Cole ALJ, Jameson PE, McWha JA (1982) Cytokinin production by ectomycorrhizal fungi. New Phytol 91:57–62

    Article  CAS  Google Scholar 

  • Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fert Soils 15:68–72

    Article  CAS  Google Scholar 

  • Okon Y, Bloemberg GV, Lugtenberg BJJ (1998) Biotechnology of biofertilization and phytostimulation. In: Altman A (ed) Agricultural biotechnology. Marcel Dekker, New York, pp 327–349

    Google Scholar 

  • Ördög V, Stirk WA, Van Staden J, Novák O, Strnad M (2004) Endogenous cytokinins in three genera of microalgae from the chlorophyta. J Phycol 40:88–95

    Article  CAS  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2014) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microb 68:3795–3801

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TG, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelacho AM, Mingo-Castel AM (1991) Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiol 97:1253–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips D, Torrey J (1972) Studies on cytokinin production by Rhizobium. Plant Physiol 49:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134

    Article  CAS  Google Scholar 

  • Piccolo A, Nardi S, Concheri G (1992) Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biol Biochem 24:373–380

    Article  CAS  Google Scholar 

  • Pimenta Lange MJ, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 8:281–290

    Article  CAS  PubMed  Google Scholar 

  • Powell GK, Morris RO (1986) Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homotogy with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res 14:2555–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Lu K, Strong PJ, Xu Q, Wu Q, Xu Z, Xu J, Wang H (2015) Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Appl Soil Ecol 89:35–43

    Article  Google Scholar 

  • Rauthan BS, Schnitzer M (1981) Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 63:491–495

    Article  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439–463

    Article  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JS, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldán M, Gómez-Mena C, Ruiz-García L, Salinas J, Martínez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581–590

    Article  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci USA 100:14577–14580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sahni S, Sarma BK, Singh DP, Singh HB, Singh KP (2008) Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Prot 27:369–376

    Article  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  Google Scholar 

  • Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102:9972–9977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma I, Phookan DB, Boruah S (2015) Influence of manures and biofertilizers on carrot (Daucus carota L.) cv. Early Nantes growth, yield and quality. EFAJ 10:25–27

    Google Scholar 

  • Sauter M, Mekhedov SL, Kende H (1995) Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J 7:623–632

    Article  Google Scholar 

  • Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL, Flematti GR (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg Med Chem Lett 22:3743–3746

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmülling T (2002) New insights into the functions of cytokinins in plant development. J Plant Growth Regul 21:40–49

    Article  PubMed  CAS  Google Scholar 

  • Shafi M, Shah A, Bakht J, Shah M, Mohammad W (2012) Integrated effect of inorganic and organic nitrogen sources on soil fertility and productivity of maize. J Plant Nutr 35:524–537

    Article  CAS  Google Scholar 

  • Shaviv A, Mikkelsen RL (1993) Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation—a review. Fert Res 35:1–12

    Article  CAS  Google Scholar 

  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM (2013) Plant biology: Witchcraft and destruction. Nature 504:384–385

    Article  CAS  PubMed  Google Scholar 

  • Šimko I (1994) Sucrose application causes hormonal changes associated with potato tuber induction. J Plant Growth Regul 13:73–77

    Article  Google Scholar 

  • Sivasakthivelan P, Saranraj P (2013) Azospirillum and its formulation. Int J Microl Res 4:275–287

    Google Scholar 

  • Skylar A, Sung F, Hong F, Chory J, Wu X (2011) Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev Biol 351:82–89

    Article  CAS  PubMed  Google Scholar 

  • Song X, Liu M, Wu D, Griffiths BS, Jiao J, Li H, Hu F (2015) Interaction matters: synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl Soil Ecol 89:25–34

    Article  Google Scholar 

  • Souza BM, Molfetta-Machado JB, Freschi L, Figueira A, Purgatto E, Buckeridge MS, Van Sluys M, Mercier H (2010) Axillary bud development in pineapple nodal segments correlates with changes on cell cycle gene expression, hormone level, and sucrose and glutamate contents. In Vitro Cell Dev-Plant 46:281–288

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in Plant Development, 2nd edn. Cambridge University Press, London

    Book  Google Scholar 

  • Stirk WA, Van Staden J (2010) Flow of cytokinins through the environment. Plant Growth Regul 62:101–116

    Article  CAS  Google Scholar 

  • Stirk WA, Ördög V, Van Staden J (1999) Identification of the cytokinin isopentenyladenine in a strain of Arthronema africanum (Cyanobacteria). J Phycol 35:89–92

    Article  CAS  Google Scholar 

  • Stirk WA, Novák O, Strnad M, Van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regul 41:13–24

    Article  CAS  Google Scholar 

  • Stirk WA, Novák O, Hradecká V, Pĕnčík A, Rolčík J, Strnad M, Van Staden J (2009) Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. Eur J Phycol 44:231–240

    Article  CAS  Google Scholar 

  • Stirk WA, Van Staden J, Novák O, Doležal K, Strnad M, Dobrev P, Sipos G, Ördög V, Bálint P (2011) Changes in endogenous cytokinin concentrations in Chlorella (Chlorophyceae) in relation to light and the cell cycle. J Phycol 47:291–301

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116:83–91

    CAS  PubMed  Google Scholar 

  • Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015) Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul 75:281–295

    Article  CAS  Google Scholar 

  • Tarkowski P, Ge L, Yong JWH, Tan SN (2009) Analytical methods for cytokinins. Trend Anal Chem 28:323–335

    Article  CAS  Google Scholar 

  • Taylor NJ, Stirk WA, Van Staden J (2003) The elusive cytokinin biosynthetic pathway. S Afr J Bot 69:269–281

    Article  CAS  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D (1998) The greening of the green revolution. Nature 396:211–212

    Article  CAS  Google Scholar 

  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35

    Article  CAS  Google Scholar 

  • Turnbull CG, Raymond MA, Dodd IC, Morris SE (1997) Rapid increases in cytokinin concentration in lateral buds of chickpea (Cicer arietinum L.) during release of apical dominance. Planta 202:271–276

    Article  CAS  Google Scholar 

  • Ueda N, Kojima M, Suzuki K, Sakakibara H (2012) Agrobacterium tumefaciens tumor morphology root plastid localization and preferential usage of hydroxylated prenyl donor is important for efficient gall formation. Plant Physiol 159:1064–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M (2011) Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnol 28:429–437

    Article  CAS  Google Scholar 

  • Upadhyaya NM, Letham DS, Parker CW, Hocart CH, Dart PJ (1991) Do Rhizobia produce cytokinins? Biochem Int 24:123–130

    CAS  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Staden J (1976) The release of cytokinins by maize roots. Plant Sci Lett 7:279–283

    Article  Google Scholar 

  • Van Staden J, Bennett PH (1991) Gall formation in crofton weed. Differences between normal stem tissue and gall tissue with respect to cytokinin levels and requirement for in vitro culture. S Afr J Bot 57:246–248

    Article  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biot 71:137–144

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ruan YL (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci 4:1–9

    Google Scholar 

  • Wang R, Xing X, Crawford N (2007) Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiol 145:1735–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiger TM, Hermann A (2014) Cell proliferation, potassium channels, polyamines and their interactions: a mini review. Amino Acids 46:681–688

    Article  CAS  PubMed  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  CAS  PubMed  Google Scholar 

  • Xiang W, Zhao L, Xu X, Qin Y, Yu G (2012) Mutual information between beneficial microorganisms and the roots of host plants determined the bio-functions of biofertilizers. Am J Plant Sci 3:1115–1120

    Article  Google Scholar 

  • Ya’acov YL (1996) Nitric oxide in biological systems. Plant Growth Regul 18:155–159

    Article  Google Scholar 

  • Yong JWH, Wong SC, Letham DS, Hocart CH, Farquhar GD (2000) Effects of elevated [CO2] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiol 124:767–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong JWH, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut water. Molecules 14:5144–5164

    Article  CAS  PubMed  Google Scholar 

  • Yong JWH, Letham DS, Wong SC, Farquhar GD (2014) Rhizobium-induced elevation in xylem cytokinin delivery in pigeonpea induces changes in shoot development and leaf physiology. Funct Plant Biol 41:1323–1335

    Article  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Pl J 61:672–685

    Article  CAS  Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. EJBPR 5:1–6

    Google Scholar 

  • Zachmann JE, Molina JAE (1993) Presence of culturable bacteria in cocoons of the earthworm Eisenia fetida. Appl Environ Microbiol 59:1904–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tan SN, Wong WS, Ng CYL, Teo CH, Ge L, Chen X, Yong JWH (2014) Mass spectrometric evidence for the occurrence of plant growth promoting cytokinins in vermicompost tea. Biol Fert Soils 50:401–403

    Article  CAS  Google Scholar 

  • Zhang H, Tan SN, Teo CH, Yew YR, Ge L, Chen X, Yong JWH (2015) Analysis of phytohormones in vermicompost using a novel combinative sample preparation strategy of ultrasound-assisted extraction and solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry. Talanta 139:189–197

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FY, Cai FX, Gao HJ, Zhang SY, Wang K, Liu T, Wang X (2015) ABA plays essential roles in regulating root growth by interacting with auxin and MAPK signaling pathways and cell-cycle machinery in rice seedlings. Plant Growth Regul 75:535–547

    Article  CAS  Google Scholar 

  • Zhou XY, Song L, Xue HW (2013) Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Mol Plant 6:887–904

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. H. Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wong, W.S., Tan, S.N., Ge, L., Chen, X., Yong, J.W.H. (2015). The Importance of Phytohormones and Microbes in Biofertilizers. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_6

Download citation

Publish with us

Policies and ethics