Skip to main content
  • 1436 Accesses

Abstract

A variety of SRCOs realized with numerous variants of CCs introduced in the literature as well as using a number of other new building blocks have been discussed. Our endeavor here has been on including only some representative circuit configurations (from amongst a large number of oscillator circuits reported in literature) which possess some specific attractive features of practical interest; interested readers can explore other options from the list of references provided at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is, however, interesting to point out that it went almost unnoticed that the basic idea of the DVCC was introduced by Pal [19] as early as in 1989 itself who had demonstrated its advantage in realizing lossless floating inductors.

  2. 2.

    It may be pointed out that it went completely unnoticed in [20] as well as in most of the other works on the use of ICCII+ that this variant of the CCII was already conceived much earlier by Chong and Smith in [5] wherein they had called this version of CC as the new type of CC, termed CCIIB which was employed by them in realizing one of the special cases of their single-CC biquads.

  3. 3.

    For instance, see Senani R (1988) Floating immittance realization: Nullor approach. Electron Lett: 24: 403–405; Soliman AM (2010) On the four terminal floating nullor (FTFN) and the operational Mirror amplifier (OMA). J Active Passive Electron Devices: 5: 209–219.

References

  1. Filanovsky IM, Stromsmoe KA (1981) Current-voltage conveyor. Electron Lett 17:129–130

    Article  Google Scholar 

  2. Senani R (1980) Novel circuit implementation of current conveyors using an O.A. and an O.T.A. Electron Lett 16:2–3

    Article  Google Scholar 

  3. Dostal T, Pospisil J (1982) Current and voltage conveyors- A family of three-port immittance converters. ISCAS, Rome, pp 419–422

    Google Scholar 

  4. Senani R (1984) Novel application of generalized current conveyor. Electron Lett 20:169–170 (Errata: (1984) 20: 356)

    Article  Google Scholar 

  5. Chong CP, Smith KC (1986) Biquadratic filter sections employing a single current conveyor. Electron Lett 22:1162–1164

    Article  Google Scholar 

  6. Toumazou C, Payne A, Lidgey FJ (1991) Operational floating conveyor. Electron Lett 27:651–652

    Article  Google Scholar 

  7. Fabre A (1995) Third-generation current conveyor: a new helpful active element. Electron Lett 31:338–339

    Article  Google Scholar 

  8. Sobhy EA, Soliman AM (2009) Novel CMOS realization of balanced-output third generation inverting current conveyor with applications. Circ Syst Signal Process 28:1037–1051

    Article  MATH  Google Scholar 

  9. Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 143:91–96

    Article  MATH  Google Scholar 

  10. Sackinger E, Guggenbuhl W (1987) A versatile building block: the CMOS differential difference amplifier. IEEE J Solid State Circuits 22:287–294

    Article  Google Scholar 

  11. Surakampontorn W, Riewruja V, Kumwachara K, Dejhan K (1991) Accurate CMOS based current conveyors. IEEE Trans Instrum Meas 40:699–702

    Article  Google Scholar 

  12. Gupta SS, Senani R (2001) Comments on ‘CMOS differential difference current conveyors and their applications’. IEE Proc Circ Devices Syst 148:335–336

    Article  Google Scholar 

  13. Prommee P, Somdunyakanok M (2011) CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. Int J Electron Commun 65:1–8

    Article  Google Scholar 

  14. Horng JW, Hou CL, Chang CM, Chung WY, Wei HY (2005) Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs. Comput Electr Eng 31:190–202

    Article  MATH  Google Scholar 

  15. Wu J, El Masry E (1996) Current-mode ladder filters using multiple output current conveyors. IEE Proc Circ Devices Syst 143:218–222

    Article  MATH  Google Scholar 

  16. Hwang YS, Hung PT, Chen W, Liu SI (2002) Systematic generation of current-mode linear transformation filters based on multiple output CCIIs. Analog Integr Circ Sig Process 32:123–134

    Article  Google Scholar 

  17. Abdalla KK (2013) Universal current-mode biquad employing dual output current conveyors and MO-CCCA with grounded passive elements. Circ Syst 4:83–88

    Article  Google Scholar 

  18. Maheshwari S (2010) Current-mode third-order quadrature oscillator. IET Circ Devices Syst 4:188–195

    Article  Google Scholar 

  19. Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40

    Article  Google Scholar 

  20. Elwan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200

    Article  Google Scholar 

  21. Soliman AM (2009) On the DVCC and the BOCCII as adjoint elements. J Circ Syst Comput 18:1017–1032

    Article  Google Scholar 

  22. Hassan TM, Mahmoud SA (2010) New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. Int J Electron Commun 64:47–55

    Article  Google Scholar 

  23. Minaei S, Yuce E (2012) A simple Schmitt Trigger Circuit with grounded passive elements and its application to square/triangular wave generator. Circ Syst Signal Process 31:877–888

    Article  MathSciNet  Google Scholar 

  24. Ibrahim MA, Minaei S, Kuntman H (2005) A 22.5 MHz current mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Int J Electron Commun 59:311–318

    Article  Google Scholar 

  25. Horng JW, Hou CL, Chang CM, Chung WY (2006) Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integr Circ Sig Process 47:73–83

    Article  MATH  Google Scholar 

  26. Pal K, Nigam MJ (2008) Novel active impedances using current conveyors. J Active Passive Electron Devices 3:29–34

    Google Scholar 

  27. Laoudias C, Psychalinos C (2014) Differential voltage current controlled current conveyor with low-voltage operation capability. Int J Electron 101:939–949

    Article  Google Scholar 

  28. Awad IA, Soliman AM (1999) Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int J Electron 86:413–432

    Article  Google Scholar 

  29. Soliman AM, Saad RA (2010) Generation of second generation current conveyor (CCII) family from inverting second generation current conveyor (ICCII). Int J Electron 97:405–414

    Article  Google Scholar 

  30. Soliman AM (2008) The inverting second generation current conveyors as universal building blocks. Int J Electron Commun 62:114–121

    Article  Google Scholar 

  31. Sobhy EA, Soliman AM (2007) Novel CMOS realizations of the inverting second-generation current conveyor and applications. Analog Integr Circ Sig Process 52:57–64

    Article  Google Scholar 

  32. Beevao D, Vrba K (2000) Novel generations of inverting current conveyor using universal current conveyor. Electron J Eng Tech 3:04p

    Google Scholar 

  33. Salama KN, Elwan HO, Soliman AM (2001) Parasitic-capacitance-insensitive voltage-mode MOSFET-C filters using differential current voltage conveyor. Circ Syst Signal Process 20:11–26

    Article  Google Scholar 

  34. Salama K, Soliman A (1999) Novel MOS-C quadrature oscillator using the differential current voltage conveyor. In 42nd IEEE midwest symposium on circuits and systems, vol 1, pp 279–282

    Google Scholar 

  35. Soliman AM, Madian AH (2009) MOS-C KHN filter using voltage OP AMP CFOA, OTRA and DCVC. J Circ Syst Comp 18:733–769

    Article  Google Scholar 

  36. El-Adawy AA, Soliman AM, Elwan HO (2000) A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans Circ Syst II 47:306–313

    Article  Google Scholar 

  37. Alzaher HA, Elwan HO, Ismail M (2000) CMOS fully differential second-generation current conveyor. Electron Lett 36:1095–1096

    Article  Google Scholar 

  38. Kacar F, Metin B, Kuntman H, Cicekoglu O (2010) A new high-performance CMOS fully differential second-generation current conveyor with application example of biquad filter realisation. Int J Electron 97:499–510

    Article  Google Scholar 

  39. Sobhy E, Soliman AM (2010) Realizations of fully differential voltage second generation current conveyor with an application. Int J Circ Theor Appl 38:441–452

    Google Scholar 

  40. Chang CM, Soliman AM, Swamy MNS (2007) Analytical synthesis of low-sensitivity high-order voltage-mode DDCC and FDCCII-grounded R and C All-pass filter structures. IEEE Trans Circ Syst I 54:430–1443

    Article  Google Scholar 

  41. Mahmoud SA (2006) New fully-differential CMOS second-generation current conveyor. ETRI J 28:495–501

    Article  Google Scholar 

  42. Alzaher HA (2004) CMOS highly linear fully differential current conveyor. Electron Lett 40:214–216

    Article  Google Scholar 

  43. Becvar D, Vrba K, Zeman V, Musil V (2000) Novel universal active block: a universal current conveyor. ISCAS, pp 471–474

    Google Scholar 

  44. Biolek D, Vrba K, Cajka J, Dostal T (2000) General three-port current conveyor: a useful tool for network design. J Electr Eng 51:36–39

    Google Scholar 

  45. Soliman AM (1998) Generalized voltage and current conveyors: practical realizations using CCII. IEICE Trans Fundament E-81:973–975

    Google Scholar 

  46. Cajka J, Dostal T, Vrba K (2004) General view on current conveyors. Int J Circ Theor Appl 32:133–138

    Article  Google Scholar 

  47. Cajka J, Vrba K (2004) The voltage conveyor may have in fact found its way into circuit theory. Int J Electron Commun 58:244–248

    Article  Google Scholar 

  48. Sponar R, Vrba K, Kubanek D (2005) Universal conveyor-novel active device suitable for analog signal processing. Proceedings of the 9th international conference on circuits, WSEAS

    Google Scholar 

  49. Herencsar N, Koton J, Vrba K (2009) A new electronically tunable voltage-mode active-C phase shifter using UVC and OTA. IEICE Electron Express 6:1212–1218

    Article  Google Scholar 

  50. Kuntman H, Cicekoglu O, Ozoguz S (2002) A modified third generation current conveyor, its characterization and applications. Frequenz 56:47–54

    Article  Google Scholar 

  51. Zeki A, Toker A (2002) The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int J Electron 89:913–923

    Article  Google Scholar 

  52. Beg P, Maheshwari S (2014) Generalized filter topology using grounded components and single novel active element. Circ Syst Signal Process. doi:10.1007/s00034-014-9807-4

    Google Scholar 

  53. Kacar F, Metin B, Kuntman H (2010) A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application. Int J Electron Commun 64:774–778

    Article  Google Scholar 

  54. Maheshwari S, Ansari MS (2012) Catalog of realizations for DXCCII using commercially available ICs and applications. Radioengineering 21:281–289

    Google Scholar 

  55. Sato T, Wada K, Takagi S, Fujii N (2002) Extension of current conveyor concept and its applications. IEICE Trans Fundament E85-A:414–421

    Google Scholar 

  56. Alzaher HA, Elwan H, Ismail M (2003) A CMOS fully balanced second-generation current conveyor. IEEE Trans Circ Syst II 50:278–287

    Article  Google Scholar 

  57. Zhang Q, Wang C, Sun J, Du S (2011) A new type of current conveyor and its application in fully balanced differential current-mode elliptic filter design. J Electr Eng 62:126–133

    Google Scholar 

  58. Chunhua W, Yang L, Qiujing Z, Yu F (2010) Systematic design of fully balanced differential current-mode multiple-loop feedback filters using CFBCII. Radioengineering 19:185–193

    Google Scholar 

  59. Gift SJG (2005) The operational conveyor and its application in an accurate current amplifier with gain-independent bandwidth. Int J Electron 92(1):33–47

    Article  Google Scholar 

  60. Horng JW, Hou CL, Chang CM (2008) Multi-input differential current conveyor, CMOS realization and application. IET Circ Devices Syst 2:469–475

    Article  Google Scholar 

  61. Chavoshisani R, Hashemipour O (2011) Differential current conveyor based current comparator. Int J Electron Commun 65:949–953

    Article  Google Scholar 

  62. Metin B, Herencsar N, Vrba K (2012) A CMOS DCCII with a grounded capacitor based cascadable all-pass filter application. Radioengineering 21:718–724

    Google Scholar 

  63. Hwang YS, Liu WH, Tu SH, Chen JJ (2009) New building block: multiplication-mode current conveyor. IET Circ Devices Syst 3:41–48

    Article  Google Scholar 

  64. Kacar F, Yesil A, Minaei S, Kuntman H (2014) Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. Int J Electron Commun 68:73–78

    Article  Google Scholar 

  65. Prasad D, Ahmad J (2014) New electronically-controllable lossless synthetic floating inductance circuit using single VDCC. Circ Syst 5:13–17

    Article  Google Scholar 

  66. Jerabek J, Sotner R, Vrba K (2014) TISO adjustable filter with controllable-gain voltage differencing current conveyor. J Electr Eng 65:137–143

    Google Scholar 

  67. De Marcellis A, Ferri G, Guerrini NC, Scotti G, Stornelli V, Trifiletti A (2009) The VCG-CCII: a novel building block and its application to capacitance multiplication. Analog Integr Circ Sig Process 58:55–59

    Article  Google Scholar 

  68. Khan IA, Nahhas AM (2012) Reconfigurable voltage mode phase shifter using low voltage digitally controlled CMOS CCII. Electr Electron Eng 2:226–229

    Article  Google Scholar 

  69. Alzaher H, Tasadduq N, Al-Ees O, Al-Ammari F (2013) A complementary metal-oxide semiconductor digitally programmable current conveyor. Int J Circ Theor Appl 41:69–81

    Google Scholar 

  70. Kumngern M, Khateb F, Phasukkit PM, Tungjitkusolmun S, Junnapiya S (2014) ECCCII-based current-mode universal filter with orthogonal control of ωo and Qo. Radioengineering 23:687–696

    Google Scholar 

  71. Piyatat T, Tangsrirat W, Surakampontorn W (2005) Current-controlled differential current voltage conveyor and its applications. ECTI-Conference, Pathumthani, Thailand, pp 661–664

    Google Scholar 

  72. Soliman AM, Saad RA (2009) On the introduction of new floating current conveyors. J Circ Syst Comput 18:1005–1016

    Article  Google Scholar 

  73. Acar C, Ozoguz O (1999) A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters. Microelectron J 30:157–160

    Article  Google Scholar 

  74. Senani R, Bhaskar DR, Singh AK (2015) Current conveyors: variants, applications and hardware implementations. Springer International Publishing, Cham

    Book  Google Scholar 

  75. Yuce E, Minaei S (2007) Realization of various active devices using commercially available AD844s and external resistors. Electron World 113:46–49

    Google Scholar 

  76. Hou CL, Chen RD, Wu YP, Hu PC (1993) Realization of grounded and floating immittance function simulators using current conveyors. Int J Electron 74:917–923

    Article  Google Scholar 

  77. Svoboda JA (1994) Comparison of RC op-amp and RC current conveyors filters. Int J Electron 76:615–626

    Article  Google Scholar 

  78. Chang C, Lee MS (1994) Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower. Electron Lett 30:2112–2113

    Article  MathSciNet  Google Scholar 

  79. Vosper JV, Heima M (1996) Comparison of single-and dual-element frequency control in a CCII-based sinusoidal oscillator. Electron Lett 32:2293–2294

    Article  Google Scholar 

  80. Horng JW, Tsai CC, Lee MH (1996) Novel universal voltage-mode biquad filter with three inputs and one outputs using only two current conveyors. Int J Electron 80:543–546

    Article  Google Scholar 

  81. Wang HY, Lee CT (1997) Immittance function simulator using a single current conveyor. Electron Lett 33:574–576

    Article  Google Scholar 

  82. Liu SI, Lee JL (1997) Voltage-mode universal filters using two current conveyors. Int J Electron 82:145–149

    Article  Google Scholar 

  83. Horng JW, Lee MH, Cheng HC, Chang CW (1997) New CCII-based voltage-mode universal biquadratic filter. Int J Electron 82:151–155

    Article  Google Scholar 

  84. Chang CM (1997) Multifunction biquadratic filters using current conveyors. IEEE Trans Circ Syst II 44:956–958

    Article  Google Scholar 

  85. Lee JY, Tsao HW (1992) True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans Instrum Meas 41(5):709–714

    Article  Google Scholar 

  86. Liu S-I, Kuo J-H, Tsay J-H (1992) New CCII-based current-mode biquadratic filters. Int J Electron 72:243–252

    Article  Google Scholar 

  87. Wilson B (1992) Trends in current conveyor and current-mode amplifier design. Int J Electron 73:573–583

    Article  Google Scholar 

  88. Brunn E, Olesen OH (1992) Conveyor implementations of generic current mode circuits. Int J Electron 73:129–140

    Article  Google Scholar 

  89. Svoboda JA (1994) Transfer function synthesis using current conveyors. Int J Electron 76:611–614

    Article  Google Scholar 

  90. Fabre A, Dayoub F, Duruisseau L, Kamoun M (1994) High input impedance insensitive second-order filters implemented from current conveyors. IEEE Trans Circ Syst I 41:918–921

    Article  Google Scholar 

  91. Martinez PA, Celma S, Gutiérrez I (1995) Wien-type oscillators using CCII+. Analog Integr Circ Sig Process 7:139–147

    Article  Google Scholar 

  92. Hwang YS, Liu SI, Wu DS, Wu YP (1995) Linear transformation all-pole filters based on current conveyors. Int J Electron 79(4):439–445

    Article  Google Scholar 

  93. Soliman AM (1996) New inverting-non-inverting bandpass and lowpass biquad circuit using current conveyors. Int J Electron 81:577–583

    Article  Google Scholar 

  94. Cajka J, Lindovsky D (1997) Universal RC-Active network using CCII+. J Electr Eng 48:98–100

    Google Scholar 

  95. Soliman AM (1997) Generation of current conveyors-based all-pass filters from op-amp-based circuits. IEEE Trans Circ Syst II 44:324–330

    Article  Google Scholar 

  96. Al-Walaie SA, Alturaigi MA (1997) Current mode simulation of lossless floating inductance. Int J Electron 83:825–829

    Article  Google Scholar 

  97. Vrba K, Cajka J, Zeman V (1997) New RC-active networks using current conveyors. Radioengineering 6:18–21

    Google Scholar 

  98. Vrba K, Cajka J (1997) High-order one port elements for lowpass filter realization. J Electr Eng 48:31–34

    Google Scholar 

  99. Cajka J, Dostal T, Vrba K (1997) Realization of Nth-order voltage transfer function using current conveyors CCII. Radioengineering 6:22–25

    Google Scholar 

  100. Cicekoglu O (1998) New current conveyor based active-gyrator implementation. Microelectron J 29:525–528

    Article  Google Scholar 

  101. Cicekoglu MO (1998) Active simulation of grounded inductors with CCII+s and grounded passive elements. Int J Electron 4:455–462

    Article  Google Scholar 

  102. Ozoguz S, Acar C (1998) On the realization of floating immittance function simulators using current conveyors. Int J Electron 85:463–475

    Article  Google Scholar 

  103. Soliman AM (1999) Synthesis of grounded capacitor and grounded resistor oscillators. J Franklin Inst 336:735–746

    Article  MATH  Google Scholar 

  104. Cicekoglu O, Ozcan S, Kuntman H (1999) Insensitive multifunction filter implemented with current conveyors and only grounded passive elements. Frequenz 53:158–160

    Article  Google Scholar 

  105. Chang CM, Tu SH (1999) Universal voltage-mode filter with four inputs and one output using two CCII+s. Int J Electron 86:305–309

    Article  Google Scholar 

  106. Abuelma’atti MT, Tasadduq NA (1999) New negative immittance function simulators using current conveyors. Microelectron J 30:911–915

    Article  Google Scholar 

  107. Soliman AM, Elwakil AS (1999) Wien oscillators using current conveyors. Comput Electr Eng 25:45–55

    Article  Google Scholar 

  108. Abuelma’atti MT (2000) Comment on: Active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 87:177–181

    Article  Google Scholar 

  109. Cicekoglu O (2000) Reply to comment on: active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 87:183–184

    Article  Google Scholar 

  110. Abuelma’atti MT, Tasadduq NA (2000) Current-mode lowpass/bandpass and highpass filter using CCII + s. Frequenz 54:162–164

    Google Scholar 

  111. Abuelma’atti MT (2000) New sinusoidal oscillators with fully uncoupled control of oscillation frequency and condition using three CCII + s. Analog Integr Circ Sig Process 24:253–261

    Article  Google Scholar 

  112. Ozoguz S, Acar C, Toker A, Gunes EO (2001) Derivation of low-sensitivity current-mode CCII-based filters. IEE Proc Circ Devices Syst 148:115–120

    Article  Google Scholar 

  113. Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664

    Article  Google Scholar 

  114. Cicekoglu O, Toker A, Kuntman H (2001) Universal immittance function simulators using current conveyors. Comput Electr Eng 27:227–238

    Article  MATH  Google Scholar 

  115. Biolek D, Cajka J, Vrba K, Zeman V (2002) Nth-order allpass filters using current conveyors. J Electr Eng 53:50–53

    Google Scholar 

  116. Soliman AM (2013) Two integrator loop quadrature oscillators: a review. J Adv Res 4:1–11

    Article  Google Scholar 

  117. Aksoy M, Ozcan S, Cicekoglu O, Kuntman H (2002) High output impedance current-mode third-order Butterworth filter topologies employing unity gain voltage buffers and equal-valued passive components. Int J Electron 90:589–598

    Article  Google Scholar 

  118. Shah NA, Malik MA (2005) High impedance voltage- and current –mode multifunction filters. Int J Electron Commun 59:262–266

    Article  Google Scholar 

  119. Kumar P, Pal K (2005) Variable Q all-pass, notch and band-pass filters using single CCII. Frequenz 59:235–239

    Article  Google Scholar 

  120. Horng JW (2004) High input impedance voltage-mode universal biquadratic filters with three inputs using plus-type CCIIs. Int J Electron 91:465–475

    Article  Google Scholar 

  121. Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron 91:477–483

    Article  Google Scholar 

  122. Abuelma’atti MT, Bentrcia A, Al-Shahrani SM (2004) A novel mixed-mode current conveyor-based filter. Int J Electron 91:191–197

    Article  Google Scholar 

  123. Horng JW (2004) Voltage-mode universal biquadratic filters using CCIIs. IEICE Trans Fundament E-87-A:406–409

    Google Scholar 

  124. Horng JW, Hou CL, Chang CM, Chung WY, Tang HW, Wen YH (2005) Quadrature oscillators using CCIIs. Int J Electron 92:21–31

    Article  Google Scholar 

  125. Fongsamut C, Fujii N, Surakampontorn W (2005) Two new RC oscillators using CCIIs. Proc ISCIT, pp 1138–1141

    Google Scholar 

  126. Khan AA, Bimal S, Dey KK, Roy SS (2005) Novel RC sinusoidal oscillator using second-generation current conveyors. IEEE Trans Instrum Meas 54:2402–2406

    Article  Google Scholar 

  127. Horng JW (2005) Current conveyors based allpass filters and quadrature oscillators employing grounded capacitors and resistors. Comput Electr Eng 31:81–92

    Article  MATH  Google Scholar 

  128. Abuelma’atti MT, Shahrani SMA, Al-Absi MK (2005) Simulation of a mutually coupled circuit using plus-type CCIIs. Int J Electron 92:49–54

    Article  Google Scholar 

  129. Keskin AU (2005) Single CFA-Based NICs with impedance scaling properties. J Circ Syst Comput 14:195–203

    Article  Google Scholar 

  130. Minaei S, Ibrahim MA (2005) General configuration for realizing current-mode first-order all-pass filter using DVCC. Int J Electron 92:347–356

    Article  Google Scholar 

  131. Maheshwari S (2007) High input impedance VM-APSs with grounded passive elements. IET Circ Devices Syst 1:72–78

    Article  Google Scholar 

  132. Yuce E, Cicekoglu O (2006) The effects of non-idealities and current limitations on the simulated inductances employing current conveyors. Analog Integr Circ Sig Process 46:103–110

    Article  Google Scholar 

  133. Pandey N, Paul SK, Bhattacharyya JSB (2006) A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron Express 3:115–121

    Article  Google Scholar 

  134. Metin B, Cicekoglu O (2006) A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Trans Circ Syst II 53:483–486

    Article  Google Scholar 

  135. Maundy B, Gift S, Aronhime P (2007) Realization of a GIC using Hybrid current conveyors/operational amplifier circuits. 50th Midwest Symp Circ Syst (MWSCAS 2007), pp 163–166

    Google Scholar 

  136. Maundy B, Gift S, Aronhime P (2007) A novel Hybrid active inductor. IEEE Trans Circ Syst II 54:663–667

    Article  Google Scholar 

  137. Kumar P, Pal K, Rana S (2008) High input impedance universal biquadratic filters using current conveyors. J Active Passive Electron Devices 3:17–27

    Google Scholar 

  138. Kumar P, Pal K (2008) Universal biquadratic filter using single current conveyor. J Active Passive Electron Devices 3:7–16

    Google Scholar 

  139. Pandey N, Paul SK, Jain SB (2008) Voltage mode universal filter using two plus type CCIIs. J Active Passive Electron Devices 3:165–173

    Google Scholar 

  140. Yuce E (2008) Negative impedance converter with reduced non-ideal gain and parasitic impedance effect. IEEE Trans Circ Syst I 55:276–283

    Article  MathSciNet  Google Scholar 

  141. Yuce E (2008) Grounded inductor simulators with improved low-frequency performances. IEEE Trans Instrum Meas 57:1079–1084

    Article  Google Scholar 

  142. Maundy B, Gift S, Aronhime P (2008) Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:201–206

    Article  Google Scholar 

  143. Ferri G, Guerrini N, Silverii E, Tatone A (2008) Vibration damping using CCII-based inductance simulators. IEEE Trans Instrum Meas 57(5):907–914

    Article  Google Scholar 

  144. Maheshwari S (2008) High output impedance current-mode all-pass sections with two grounded passive components. IET Circ Devices Syst 2:234–242

    Article  Google Scholar 

  145. Yuce E, Minaei S (2008) Electronically tunable simulated transformer and its application to Stagger-tuned filter. IEEE Trans Instrum Meas 57:2083–2088

    Article  Google Scholar 

  146. Senani R, Bhaskar DR (2008) Comment: practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:465–466

    Article  Google Scholar 

  147. Skotis GD, Psychalinos C (2010) Multiphase sinusoidal oscillator using second generation current conveyors. Int J Electron Commun 64:1178–1181

    Article  Google Scholar 

  148. Maheshwari S (2007) Novel cascadable current-mode first order all-pass sections. Int J Electron 94:995–1003

    Article  Google Scholar 

  149. Nordholt EH (1982) Extending op-amp capabilities by using a current-source power supply. IEEE Trans Circ Syst 29:411–412

    Article  Google Scholar 

  150. Stevenson JK (1984) Two-way circuits with inverse transmission properties. Electron Lett 20:965–967

    Article  Google Scholar 

  151. Huijsing JH (1990) Operational amplifier. IEE Proc Circ Devices Syst 137:131–136

    Article  Google Scholar 

  152. Senani R (1987) A novel application of four –terminal floating nullor. IEEE Proc 75:1544–1546

    Article  Google Scholar 

  153. Hou CL, Yean R, Chang CK (1996) Single-element controlled oscillators using single FTFN. Electron Lett 32:2032–2033

    Article  Google Scholar 

  154. Liu SI (1997) Single-resistance-controlled sinusoidal oscillators using two FTFNs. Electron Lett 33:14p

    Google Scholar 

  155. Abuelma’atti MT, Al-Zaher HA (1998) Current-mode sinusoidal oscillator using two FTFNs. Proc Natl Sci Counc ROC (A) 22:758–764

    Google Scholar 

  156. Wang HY, Lee CT (1998) Realization of R-L and C-D immittances using single FTFN. Electron Lett 34:502–503

    Article  Google Scholar 

  157. Bhaskar DR (1999) Single resistance controlled sinusoidal oscillator using single FTFN. Electron Lett 35:190

    Article  Google Scholar 

  158. Abuelma’atti MT, Al-Zaher HA (1999) Current-mode quadrature sinusoidal oscillators using two FTFNs. Frequenz 53:27–30

    Google Scholar 

  159. Abuelma’atti MT, Al-Zaher HA (1999) Current-mode sinusoidal oscillator using single FTFN. IEEE Trans Circ Syst II 46:69–74

    Article  Google Scholar 

  160. Gunes EO, Anday F (1999) Realization of voltage/current-mode filters using four-terminal floating nullors. Microelectron J 30:211–216

    Article  Google Scholar 

  161. Cam U, Toker A, Cicekoglu O, Kuntman H (2000) Current-mode high output impedance sinusoidal oscillator configuration employing single FTFN. Analog Integr Circ Sig Process 24:231–238

    Article  Google Scholar 

  162. Cam U, Cicekoglu O, Kuntman H (2000) Universal series and parallel immittance simulators using four terminal floating nullors. Analog Integr Circ Sig Process 25:59–66

    Article  Google Scholar 

  163. Lee CT, Wang HY (2001) Minimum realization for FTFN based SRCO. Electron Lett 37:1207–1208

    Article  Google Scholar 

  164. Cam U, Cicekoglu O, Kuntman H (2001) Novel lossless floating immittance simulator employing only two FTFNs. Analog Integr Circ Sig Process 29:233–235

    Article  Google Scholar 

  165. Wang HY, Chung H, Huang WC (2002) Realization of an nth-order parallel immittance function employing only (n-1) FTFNs. Int J Electron 89:645–650

    Article  Google Scholar 

  166. Bhaskar DR (2002) Grounded-capacitor SRCO using only one PFTFN. Electron Lett 38(20):1156–1157

    Article  Google Scholar 

  167. Acar C, Ozoguz S (2000) nth -order current transfer function synthesis using current differencing buffered amplifier: signal-flow graph approach. Microelectron J 31:49–53

    Article  Google Scholar 

  168. Ozcan S, Toker A, Acar C, Kuntman H, Cicekoglu O (2000) Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier. Microelectron J 31:169–174

    Article  Google Scholar 

  169. Ozcan S, Kuntman H, Cicekoglu O (2002) Cascadable current mode multipurpose filters employing current differencing buffered amplifier (CDBA). Int J Electron Commun 56:67–72

    Article  Google Scholar 

  170. Horng JW (2002) Current differencing buffered amplifiers based single resistance controlled quadrature oscillator employing grounded capacitors. IEICE Trans Fundament E85-A:1416–1419

    Google Scholar 

  171. Keskin AU (2004) A four quadrant analog multiplier employing single CDBA. Analog Integr Circ Sig Process 40:99–101

    Article  Google Scholar 

  172. Keskin AU (2005) Voltage-mode notch filters using single CDBA. Frequenz 59:1–4

    Article  MathSciNet  Google Scholar 

  173. Tangsrirat W, Surakampontorn W (2005) Realization of multiple-output biquadratic filters using current differencing buffered amplifiers. Int J Electron 92:313–325

    Article  Google Scholar 

  174. Keskin AU (2006) Multi-function biquad using single CDBA. Electr Eng 88:353–356

    Article  Google Scholar 

  175. Keskin AU, Aydin C, Hancioglu E, Acar C (2006) Quadrature oscillator using current differencing buffered amplifiers (CDBA). Frequenz 60:21–23

    Article  Google Scholar 

  176. Koksal M, Sagbas M (2007) A versatile signal flow graph realization of a general transfer function by using CDBA. Int J Electron Commun 61:35–42

    Article  Google Scholar 

  177. Tangsrirat W, Pisitchalermpong S (2007) CDBA-based quadrature sinusoidal oscillator. Frequenz 61:102–104

    Article  Google Scholar 

  178. Tangsrirat W, Pukkalanun T, Surakampontorn W (2008) CDBA-based universal biquad filter and quadrature oscillator. Active Passive Electron Comp ID 247171

    Google Scholar 

  179. Tangsrirat W, Prasertsom D, Piyatat T, Surakampontorn W (2008) Single-resistance-controlled quadrature oscillator using current differencing buffered amplifiers. Int J Electron 95:1119–1126

    Article  Google Scholar 

  180. Pathak JK, Singh AK, Senani R (2010) Systematic realization of quadrature oscillators using current differencing buffered amplifiers. IET Circ Devices Syst 5:203–211

    Article  Google Scholar 

  181. Celma S, Sabadell J, Martinez P (1995) Universal filter using unity –gain cells. Electron Lett 31:1817–1818

    Article  Google Scholar 

  182. Senani R, Gupta SS (1997) Universal voltage-mode/current-mode biquad filter realized with current feedback op-amps. Frequenz 51:203–208

    Article  Google Scholar 

  183. Abuelma’atti MT, Daghreer HA (1997) New single-resistor controlled sinusoidal oscillator circuit using unity-gain current followers. Active Passive Electron Comp 20:105–109

    Article  Google Scholar 

  184. Weng RM, Lai JR, Lee MH (2000) New universal biquad filters using only two unity gain cells. Int J Electron 87(1):57–61

    Article  Google Scholar 

  185. Kuntman H, Cicekoglu O, Ozcan S (2002) Realization of current-mode third order Butterworth filters employing equal valued passive elements and unity gain buffers. Analog Integr Circ Sig Process 30:253–256

    Article  Google Scholar 

  186. Gupta SS, Senani R (2004) New single resistance controlled oscillators employing a reduced number of unity-gain cells. IEICE Electron Express 1:507–512

    Article  Google Scholar 

  187. Keskin AU, Toker A (2004) A NIC with impedance scaling properties using unity gain cells. Analog Integr Circ Sig Process 41:85–87

    Article  Google Scholar 

  188. Nandi R, Kar M (2009) Third order lowpass Butterworth filters using unity gain current amplifiers. IEICE Electron Express 6:1450–1455

    Article  Google Scholar 

  189. Chen JJ, Tsao HW, Chen CC (1992) Operational transresistance amplifier using CMOS technology. Electron Lett 28:2087–2088

    Article  Google Scholar 

  190. Abdalla K, Bhaskar DR, Senani R (2012) A review of the evolution of current-mode circuits and techniques and various modern analog circuit building blocks. Nat Sci 10:10p

    Google Scholar 

  191. Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A (2004) Novel two OTRA-based grounded immittance simulator topologies. Analog Integr Circ Sig Process 39:169–175

    Article  Google Scholar 

  192. Hou CL, Chien HC, Lo YK (2005) Square wave generators employing OTRAs. IEE Proc Circ Devices Syst 152:718–722

    Article  Google Scholar 

  193. Lo YK, Chien HC (2006) Current-mode monostable multivibrators using OTRAs. IEEE Trans Circ Syst II 53:1274–1278

    Article  Google Scholar 

  194. Kilinc S, Salama KN, Cam U (2006) Realization of fully controllable negative inductance with single operational transresistance amplifier. Circ Syst Signal Process 5(1):47–57

    Article  MATH  Google Scholar 

  195. Chen JJ, Tsao HW, Liu SI, Chiu W (1995) Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proc Circ Devices Syst 142:186–192

    Article  Google Scholar 

  196. Lo YK, Chien HC (2007) Switch-controllable OTRA-based square/triangular waveform generator. IEEE Trans Circ Syst II 54:1110–1114

    Article  Google Scholar 

  197. Lo YK, Chien HC (2007) Single OTRA-based current-mode monostable multivibrator with two triggering modes and a reduced recovery time. IET Circ Devices Syst 1:257–261

    Article  Google Scholar 

  198. Lo YK, Chien HC, Chiu HJ (2008) Switch-controllable OTRA-based bistable multivibrator. IET Circ Devices Syst 2:373–382

    Article  Google Scholar 

  199. Lo YK, Chien HC, Chiu HJ (2010) Current-input OTRA Schmitt trigger with dual hysteresis modes. Int J Circ Theor Appl 38:739–746

    Article  MATH  Google Scholar 

  200. Sanchez-Lopez C, Martinez-Romero E, Tlelo-Cuautle E (2011) Symbolic analysis of OTRAs-based circuits. J Appl Res Technol 9:69–80

    Google Scholar 

  201. Gupta A, Senani R, Bhaskar DR, Singh AK (2011) OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circ Syst Signal Process 31:489–499

    Article  MathSciNet  Google Scholar 

  202. Herencsar N, Vrba K, Koton J, Lattenberg I (2009) The conception of differential–input buffered and transconductance amplifier (DBTA) and its application. IEICE Electron Express 6(6):329–334

    Article  Google Scholar 

  203. Herencsar N, Koton J, Vrba K, Lahiri A (2009) New voltage-mode quadrature oscillator employing single DBTA and only grounded passive elements. IEICE Electron Express 6:1708–1714

    Article  Google Scholar 

  204. Herencsar N, Koton J, Vrba K, Lattenberg I (2010) New voltage-mode universal filter and sinusoidal oscillator using only single DBTA. Int J Electron 97:365–379

    Article  Google Scholar 

  205. Biolek D (2003) CDTA-Building block for current-mode analog signal processing. Proceedings of the ECCTD’03, Krakow, Poland III, pp 397–400

    Google Scholar 

  206. Bekri AT, Anday F (2005) nth -order low-pass filter employing current differencing transconductance amplifiers. Proceedings of the 2005 European Conference on Circuit Theory and Applications, vol 2, pp II/193–II/196

    Google Scholar 

  207. Tangsrirat W (2007) Current differencing transconductance amplifier-based current-mode four-phase quadrature oscillator. Indian J Eng Mater Sci 14:289–294

    Google Scholar 

  208. Prasad D, Bhaskar DR, Singh AK (2008) Realisation of single-resistance-controlled sinusoidal oscillator: a new application of the CDTA. WSEAS Trans Electron 5:257–259

    Google Scholar 

  209. Silapan P, Siripruchyanum M (2011) Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr Circ Sig Process 68:111–128

    Article  Google Scholar 

  210. Lahiri A (2010) Resistor-less mixed-mode quadrature sinusoidal oscillator. Int J Comp Elect Eng 2:63–66

    Article  Google Scholar 

  211. Herencsar N, Koton J, Vrba K, Misurec J (2009) A novel current-mode SIMO type universal filter using CFTAs. Contemp Eng Sci 2:59–66

    Google Scholar 

  212. Herencsar N, Koton J, Vrba K (2010) Realization of current-mode KHN-equivalent biquad using current follower transconductance amplifiers (CFTAs). IEICE Trans Fundament E93:1816–1819

    Article  Google Scholar 

  213. Siripruchyanun M, Jaikla W (2007) Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Elect Eng 19:443–453

    Google Scholar 

  214. Maheshwari S, Singh SV, Chauhan DS (2011) Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circ Devices Syst 5(3):149–158

    Article  Google Scholar 

  215. Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32

    Google Scholar 

  216. Prasad D, Bhaskar DR, Pushkar KL (2011) Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Active Passive Electron Comp: Article ID 101432

    Google Scholar 

  217. Celma S, Martinez PA (1995) Transformation of sinusoidal oscillators using universal active elements. IEE Proc Circ Devices Syst 142:353–356

    Article  MATH  Google Scholar 

  218. Celma S, Martinez PA (1995) On the limit cycle stability in current-mode oscillators. Int J Electron 79:163–169

    Article  Google Scholar 

  219. Raut R (1994) Current mode oscillators using a voltage to current transducer in CMOS technology. Int J Electron 76:257–264

    Article  Google Scholar 

  220. Abuelma’atti MT, Al-Qahtani MA (1998) A new current-controlled multiphase sinusoidal oscillator using translinear current conveyors. IEEE Trans Circ Syst II 45:881–885

    Article  Google Scholar 

  221. Soliman AM (1998) Current mode CCII oscillators using grounded capacitors and resistors. Int J Circ Theor Appl 26:431–438

    Article  MATH  Google Scholar 

  222. Abuelma’atti MT, Tasadduq NA (1998) A novel current-controlled oscillator using translinear current conveyors. Frequenz 52:123–124

    Google Scholar 

  223. Gupta SS, Senani R (2000) Grounded-capacitor current-mode SRCO-novel application of DVCCC. Electron Lett 36:195–196

    Article  Google Scholar 

  224. Papazoglou CA, Karybakas CA (2000) An electronically tunable sinusoidal oscillator suitable for high frequencies operation based on a single dual-output variable-gain CCII. Analog Integr Circ Sig Process 23:31–44

    Article  Google Scholar 

  225. Toker A, Kuntman H, Cicekoglu O, Discigil M (2002) New oscillator topologies using inverting second-generation current conveyors. Turk J Electr Eng 10:119–129

    Google Scholar 

  226. Chang CM, Al-Hashimi BM, Chen HP, Tu SH, Wan JA (2002) Current mode single resistance controlled oscillators using only grounded passive components. Electron Lett 38:1071–1072

    Article  Google Scholar 

  227. Barthelemy H, Meillere S, Kussener E (2002) CMOS sinusoidal oscillators based on current-controlled current conveyors. Electron Lett 38:1254–1256

    Article  Google Scholar 

  228. Hou CL, Chen YT, Huang CC (2003) The oscillator using a single DVCC. Tamkang J Sci Eng 6:183–187

    Google Scholar 

  229. Aggarwal V (2004) Novel canonic current mode DDCC based SRCO synthesized using a genetic algorithm. Analog Integr Circ Sig Process 40:83–85

    Article  Google Scholar 

  230. Martinez PA, Martinez SBMM (2005) Generation of two integrator loop variable frequency sinusoidal oscillator. Int J Electron 92:619–629

    Article  Google Scholar 

  231. Maheshwari S, Khan IA (2005) Current-controlled third order quadrature oscillator. IEE Proc Circ Devices Syst 152:605–607

    Article  Google Scholar 

  232. Aggarwal V, Kilinc S, Cam U (2006) Minimum component SRCO and VFO using a single DVCCC. Analog Integr Circ Sig Process 49:181–185

    Article  Google Scholar 

  233. Horng JW, Hou CL, Chang CM, Lin YT, Shiu IC, Chiu WY (2006) First order all pass filter and sinusoidal oscillators using DDCCs. Int J Electron 93:457–466

    Article  Google Scholar 

  234. Kilinc S, Jain V, Aggarwal V, Cam U (2006) Catalogue of variable frequency and single-resistance-controlled oscillators employing a single differential difference complementary current conveyors. Frequenz 60:142–150

    Article  Google Scholar 

  235. Horng JW, Hou CL, Chang CM, Chou HP, Lin CT, Wen YH (2006) Quadrature oscillators with grounded capacitors and resistors using FDCCIIs. ETRI J 28:486–494

    Article  Google Scholar 

  236. Khan IA, Hasan S (2006) Current mode four phase quadrature oscillator using CCIIs. J Active Passive Electron Devices 1:273–279

    Google Scholar 

  237. Kumar P, Keskin AU, Pal K (2007) DVCC-based single element controlled oscillators using all-grounded components and simultaneous current-voltage mode outputs. Frequenz 61:141–144

    Article  Google Scholar 

  238. Horng JW, Hou CL, Chang CM, Cheng ST, Su HY (2008) Current or/and voltage-mode quadrature oscillators with grounded capacitors and resistors using FDCCIIs. WSEAS Trans Circ Syst 3:129–138

    Google Scholar 

  239. Toker A, Ozoguz S (2008) Comment on ‘Fist order all pass filter and sinusoidal oscillators using DDCCs. Int J Electron 95:867

    Article  Google Scholar 

  240. Pandey N, Paul SK (2008) A novel electronically tunable sinusoidal oscillator based on CCCII (-IR). J Active Passive Electron Devices 3:135–141

    Google Scholar 

  241. Lahiri A (2009) Additional realizations of single-element-controlled oscillators using single ICCII-. Int J Comput Electr Eng 1:303–306

    Article  Google Scholar 

  242. Soliman AM (2009) Generation of oscillators based on grounded capacitor current conveyors with minimum passive components. J Circ Syst Comput 18:857–873

    Article  Google Scholar 

  243. Kumngern M, Dejhan K (2009) DDCC-based quadrature oscillator with grounded capacitors and resistors. Active Passive Electron Comp. Article ID 987304, 4p

    Google Scholar 

  244. Minaei S, Yuce E (2010) Novel voltage-mode all-pass filter based on using DVCCs. Circ Syst Signal Process 29:391–402

    Article  MATH  Google Scholar 

  245. Kumngern M, Chanwutitum J, Dejhan K (2010) Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integr Circ Sig Process 65:327–334

    Article  Google Scholar 

  246. Sotner R, Hrubos Z, Slezak J, Dostal T (2010) Simply adjustable sinusoidal oscillator based on negative three port current conveyors. Radioengineering 19:446–454

    Google Scholar 

  247. Lahiri A, Jaikla W, Siripruchyanun M (2010) Voltage-mode quadrature sinusoidal oscillator with current tunable properties. Analog Integr Circ Sig Process 65:321–325

    Article  Google Scholar 

  248. Soliman AM (2010) On the generation of CCII and ICCII oscillators from three op-amps oscillator. Microelectron J 41:680–687

    Article  Google Scholar 

  249. Soliman AM (2010) Generation of three oscillator families using CCII and ICCII. Int J Electron Commun 64:880–887

    Article  Google Scholar 

  250. Soliman AM (2010) Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integr Circ Sig Process 65:43–59

    Article  Google Scholar 

  251. Lahiri A (2011) Current- mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors: a supplement. Analog Integr Circ Sig Process 68:129–131

    Article  Google Scholar 

  252. Lahiri A (2011) Deriving (MO) (I) CCCII based second-order sinusoidal oscillators with non-interactive tuning laws using state variable method. Radioengineering 20:349–353

    Google Scholar 

  253. Soliman AM (2011) Current conveyor based or unity gain cells based two integrator loop oscillators. Microelectron J 42:239–246

    Article  MathSciNet  Google Scholar 

  254. Soliman AM (2011) Transformation of a floating capacitor oscillator to a family of grounded capacitor oscillators. Int J Electron 98:289–300

    Article  Google Scholar 

  255. Lahiri A (2011) New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with application as a wide-frequency digitally controlled sinusoidal generator. Active Passive Electron Comp. Article ID 274394, 8p

    Google Scholar 

  256. Beg P, Siddiqi MA, Ansari S (2011) Multi output filter and four phase sinusoidal oscillator using CMOS DX-MOCCII. Int J Electron 98:1185–1198

    Article  Google Scholar 

  257. Horng JW, Wang ZR, Yang TY (2011) Single ICCII sinusoidal oscillators employing grounded capacitors. Radioengineering 20:608–613

    Google Scholar 

  258. Jaikla W, Siripruchyanun M, Lahiri A (2011) Resistorless dual-mode quadrature sinusoidal oscillator using a single active building blocks. Microelectron J 42:135–140

    Article  Google Scholar 

  259. Horng JW (2011) Current/voltage-mode third orders quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian J Pure Appl Phys 49:494–498

    Google Scholar 

  260. Maheshwari S, Chaturvedi B (2011) High output impedance CMQOs using DVCCs and grounded components. Int J Circ Theor Appl 39:427–435

    Article  Google Scholar 

  261. Soliman AM (2012) On oscillator circuits using two output CCII, DVCC and FDCCII. J Active Passive Electron Devices 7:325–343

    Google Scholar 

  262. Lahiri A (2012) Current-mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors. Analog Integr Circ Sig Process 71:303–311

    Article  Google Scholar 

  263. Chaturvedi B, Maheshwari S (2012) Second order mixed mode quadrature oscillator using DVCCs and grounded components. Int J Comput Appl 58:42–45

    Google Scholar 

  264. Maheshwari S, Verma R (2012) Electronically tunable sinusoidal oscillator circuit. Active Passive Electron Comp Article ID 719376, 6p

    Google Scholar 

  265. Maheshwari S (2013) Voltage-mode four-phase sinusoidal generator and its useful extensions. Active Passive Electron Comp Article ID-685939, 8p

    Google Scholar 

  266. Chen HC, Chen CY (2014) CMOS realization of single-resistance-controlled and variable frequency dual-mode sinusoidal oscillators employing a single DVCCTA with all-grounded passive components. Microelectron J 45:226–238

    Article  Google Scholar 

  267. Yucel F, Yuce E (2014) CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications. Int J Electron Commun 68:1–9

    Article  Google Scholar 

  268. Chien HC (2013) Voltage- and current-modes sinusoidal oscillator using a single differential voltage current conveyor. J Appl Sci Eng 16:395–404

    Google Scholar 

  269. Sanchez-Lopez C, Ruiz-Pastor A, Ochoa-Montiel R, Carrasco-Aguilar MA (2013) Symbolic nodal analysis of analog circuits with modern multiport functional blocks. Radioengineering 22:518–525

    Google Scholar 

  270. Senani R, Gupta SS (2004) Novel sinusoidal oscillators using only unity-gain voltage followers and current followers. IEICE Electron Express 1:404–409

    Article  Google Scholar 

  271. Gupta SS, Senani R (2006) New single-resistance –controlled oscillator configurations using unity-gain cells. Analog Integr Circ Sig Process 46:111–119

    Article  Google Scholar 

  272. Torres-Papaqui L, Torres-Munoz D, Tlelo-Cuautle E (2006) Synthesis of VFs and CFs by manipulations of generic cells. Analog Integr Circ Sig Process 46:99–102

    Article  Google Scholar 

  273. Gupta SS, Senani R (2003) Realisation of current-mode SRCOs using all grounded passive elements. Frequenz 57:26–37

    Article  Google Scholar 

  274. Maheshwari S, Mohan J, Chauhan DS (2010) High input impedance voltage-mode universal filter and quadrature oscillator. J Circ Syst Comput 19:1597–1607

    Article  Google Scholar 

  275. Bhaskar DR, Senani R (2005) New FTFN-based grounded-capacitor SRCO with explicit current-mode output and reduced number of resistors. Int J Electron Commun 59:48–51

    Article  Google Scholar 

  276. Tang A, Yuan F, Law E (2010) CMOS active transformers and their applications in voltage-controlled quadrature oscillators. Analog Integr Circ Sig Process 62:83–90

    Article  Google Scholar 

  277. Kumar P, Senani R (2007) Improved grounded-capacitor SRCO using only a single PFTFN. Analog Integr Circ Sig Process 50:147–149

    Article  Google Scholar 

  278. Yuce E, Minaei S (2008) A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans Circ Syst I 555:266–275

    Article  MathSciNet  Google Scholar 

  279. Swamy MNS (2015) Modified CFOA, its transpose, and applications. Int J Circ Theor Appl. doi:10.1002/cta.2090

    Google Scholar 

  280. Gunes EO, Toker A (2002) On the realization of oscillators using state equations. Int J Electron Commun 56:317–326

    Article  Google Scholar 

  281. Mahmut ÜN, Kacar F (2006) Voltage mode first order allpass filter and quadrature oscillator employing fully differential current feedback operational amplifier. J Electr Electron Eng 6:77–81

    Google Scholar 

  282. Gupta SS, Senani R (2005) Grounded-capacitor SRCOs using a single differential difference complementary current feedback amplifier. IEE Proc Circ Devices Syst 152:38–48

    Article  Google Scholar 

  283. Singh B, Singh AK, Senani R (2013) Realization of SRCOs: another new application of DDAs. Analog Integr Circ Sig Process 76:267–272

    Article  Google Scholar 

  284. Toker A, Ozoguz S (2004) Novel all-pass filter section using differential difference amplifier. Int J Electron Commun 58:153–155

    Article  Google Scholar 

  285. Tsividis Y, Banu M, Khaoury J (1986) Continuous-time MOSFET-C filters in VLSI. IEEE J Solid State Circ 21:15–30

    Article  Google Scholar 

  286. Mahmoud SA, Soliman AM (1997) A new CMOS realization of the differential difference amplifier and its application to a MOS-C oscillator. Int J Electron 83:455–465

    Article  Google Scholar 

  287. Mahmoud SA, Soliman AM (1998) The differential difference operational floating amplifier: a new block for analog signal processing in MOS technology. IEEE Trans Circ Syst II 45:148–158

    Article  Google Scholar 

  288. Spinelli EM, Mayosky MA, Christiansen CF (2008) Dual-mode design of fully differential circuits using fully balanced operational amplifiers. IET Circ Devices Syst 2:243–248

    Article  Google Scholar 

  289. Soltan A, Soliman AM (2009) A CMOS differential difference operational mirrored amplifier. Int J Electron Commun 63:793–800

    Article  Google Scholar 

  290. Souliotis G, Psychalinos C (2007) Harmonic oscillators realized using current amplifiers and grounded capacitors. Int J Circ Theor Appl 35:165–173

    Article  Google Scholar 

  291. Herencsar N, Lahiri A, Vrba K, Koton J (2012) An electronically tunable current-mode quadrature oscillator using PCAs. Int J Electron 99:609–621

    Article  Google Scholar 

  292. Vavra J, Bajer J (2013) Current-mode multiphase sinusoidal oscillator based on current differencing units. Analog Integr Circ Sig Process 74:121–128

    Article  Google Scholar 

  293. Leelasantitham A, Srisuchinwong B (2006) A high-frequency low-power low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator. Proc World Acad Sci Eng Technol 18:23–28

    Google Scholar 

  294. Souliotis G, Chrisanthopoulos A, Haritantis I (2001) Current differential amplifiers: new circuits and applications. Int J Circ Theor Appl 29:553–574

    Article  MATH  Google Scholar 

  295. Souliotis G, Psychalinos C (2009) Electronically controlled multiphase sinusoidal oscillators using current amplifiers. Int J Circ Theor Appl 37:43–52

    Article  Google Scholar 

  296. Sotner R, Jerabek J, Jaikla W, Herencsar N, Vrba K, Dostal T (2013) Novel oscillator based on voltage and current gain adjusting used for control of oscillation frequency and oscillation condition. Elektronika Ir Elektrotechnika 19:75–79

    Article  Google Scholar 

  297. Jin J (2013) Current-mode resistorless SIMO universal filter and four-phase quadrature oscillator. Int J Electr Comput Electron Commun Eng 7:96–101

    Google Scholar 

  298. Jin J, Wang C (2014) CDTA-based electronically tunable current-mode quadrature oscillator. Int J Electron 101:1086–1095

    Article  Google Scholar 

  299. Kumngern M, Lamun P, Dejhan K (2012) Current-mode quadrature oscillator using current differencing transconductance amplifiers. Int J Electron 99:971–986

    Article  Google Scholar 

  300. Biolek D, Keskin AU, Biolkova V (2010) Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circ Devices Syst 4:496–502

    Article  Google Scholar 

  301. Jin J, Wang C (2012) Single CDTA-based current-mode quadrature oscillator. Int J Electron Commun 66:933–936

    Article  Google Scholar 

  302. Biolek D, Keskin AU, Biolkova V (2006) Quadrature oscillator using CDTA-based integrators. WSEAS Trans Electron 3:463–469

    Google Scholar 

  303. Tangsrirat W, Pukkalanun T, Surakam W (2010) Resistorless realization of current-mode first-order allpass filter using current differencing transconductance amplifiers. Int J Electron Commun 41:178–183

    Google Scholar 

  304. Kumar A (2011) Comment: novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integr Circ Sig Process 66:143

    Article  Google Scholar 

  305. Jin J, Wang C (2014) Current-mode universal filter and quadrature oscillator using CDTAs. Turk J Electr Eng Comput Sci 22:276–286

    Article  MathSciNet  Google Scholar 

  306. Horng JW (2009) Current-mode third-order quadrature oscillator using CDTAs. Active Passive Electron Comp, Article ID 789171: 5p

    Google Scholar 

  307. Lahiri A (2009) New current-mode quadrature oscillators using CDTA. IEICE Electron Express 6:135–140

    Article  Google Scholar 

  308. Jaikla W, Siripruchyanun M, Bajer J, Biolek D (2008) A simple current-mode quadrature oscillator using single CDTA. Radioengineering 17:33–40

    Google Scholar 

  309. Tangsrirat W, Tanjaroen W, Pukkalanun T (2010) Current-mode multiphase sinusoidal oscillator using CDTA-based allpass sections. Int J Electron Commun 63:616–622

    Article  Google Scholar 

  310. Tangsrirat W, Tanjaroen W (2010) Current-mode sinusoidal quadrature oscillator with independent control of oscillation frequency and condition using CDTAs. Indian J Pure Appl Phys 48:363–366

    Google Scholar 

  311. Li Y (2012) A novel current-mode multiphase sinusoidal oscillator using MO-CDTAs. Int J Electron 99:477–489

    Article  Google Scholar 

  312. Keskin AU, Biolek D (2006) Current-mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc Circ Devices Syst 153:214–218

    Article  Google Scholar 

  313. Tangsrirat W, Tanjaroen W (2008) Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circ Syst Signal Process 27:81–93

    Article  Google Scholar 

  314. Jaikla W, Siripruchyanum M, Biolek D, Biolkova V (2010) High-output-impedance current-mode multiphase sinusoidal oscillator employing current differencing transconductance amplifier-based allpass filter. Int J Electron 97:811–826

    Article  Google Scholar 

  315. Pandey R, Pandey N, Komanapalli G, Anurag R (2014) OTRA based voltage mode third order quadrature oscillator. ISRN Electron: 5p

    Google Scholar 

  316. Salama KN, Soliman AM (2000) Active RC applications of the operational transresistance amplifier. Frequenz 54:171–176

    Google Scholar 

  317. Salama KN, Soliman AM (2000) Novel oscillator using the operational transresistance amplifier. Microelectron J 31:39–47

    Article  Google Scholar 

  318. Cam U (2002) A novel single-resistance-controlled sinusoidal oscillator employing single operational transresistance amplifier. Analog Integr Circ Sig Process 32:183–186

    Article  Google Scholar 

  319. Avireni S, Pittala CS (2014) Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Trans Circ Syst 13:145–152

    Google Scholar 

  320. Chien HC (2014) New realizations of single OTRA-based sinusoidal oscillators. Active Passive Electron Comp: 12p

    Google Scholar 

  321. Kilinc S, Cam U (2005) Cascadable allpass and notch filters employing single operational transresistance amplifier. Comput Electr Eng 13:391–401

    Article  MATH  Google Scholar 

  322. Cakir C, Cam U, Cicekoglu O (2005) Novel allpass filter configuration employing single OTRA. IEEE Trans Circ Syst II 52:122–125

    Article  Google Scholar 

  323. Srisuchinwong B (1999) A current-tunable sinusoidal quadrature oscillator using signal-differencing all-pass filters. NESTEC Tech J 1:92–99

    Google Scholar 

  324. Uttaphut P (2012) Realization of electronically tunable current-mode multiphase sinusoidal oscillators using CFTAs. World Acad Sci Eng Technol 6:643–646

    Google Scholar 

  325. Tangsrirat W, Mongkolwai P, Pukkalanun T (2012) Current-mode high-Q bandpass filter and mixed-mode quadrature oscillator using ZC-CFTAs and grounded capacitors. Indian J Pure Appl Phys 50:600–607

    Google Scholar 

  326. Herencsar N, Vrba K, Koton J, Lahiri A (2010) Realisations of single-resistance-controlled quadrature oscillators using a generalized current follower transconductance amplifier and a unity-gain voltage-follower. Int J Electron 97:897–906

    Article  Google Scholar 

  327. Li Y (2012) A series of new circuits based on CFTAs. Int J Electron Commun 66:587–592

    Article  Google Scholar 

  328. Li Y (2012) Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator. Microelectron J 45:330–335

    Article  Google Scholar 

  329. Lahiri A (2009) Explicit-current-output quadrature oscillator using second-generation current conveyor transconductance amplifier. Radioengineering 18:522–526

    Google Scholar 

  330. Pasupathy S (1966) A transistor RC oscillator using negative impedances. Electronic Eng 36:808–809

    Google Scholar 

  331. Tleo-Cuautle E, Duarte-Villasenor MA, Garcia-Ortega JM, Sanchez-Lopez C (2007) Designing SRCOs by combining SPICE and Verilog-A. Int J Electron 94:373–379

    Article  Google Scholar 

  332. Biolek D, Biolkova V (2010) First-order voltage-mode all-pass filter employing one active element and one grounded capacitor. Analog Integr Circ Sig Process 65:123–129

    Article  Google Scholar 

  333. Herencsar N, Minaei S, Koton J, Yuce E, Vrba K (2013) New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integr Circ Sig Process 74:141–154

    Article  Google Scholar 

  334. Bhaskar DR, Prasad D, Pushkar KL (2013) Fully uncoupled electronically controllable sinusoidal oscillator employing VD-DIBAs. Circ Syst 4:264–268

    Article  Google Scholar 

  335. Pushkar KL, Bhaskar DR, Prasad D (2013) Single-resistance-controlled sinusoidal oscillator using single VD-DIBA. Active Passive Electron Comp, Article ID 971936: 5p

    Google Scholar 

  336. Sotner R, Jerabek J, Herencsar N (2013) Voltage differencing buffered/inverted amplifiers and their applications for signal generation. Radioengineering 22:490–504

    Google Scholar 

  337. Prasad D, Bhaskar DR, Pushkar KL (2013) Electronically controllable sinusoidal oscillator employing CMOS VD-DIBAs. ISRN Electron, Article ID 823630: 6p

    Google Scholar 

  338. Kilinc S, Cam U (2004) Current-mode first-order allpass filter employing single current operational amplifier. Analog Integr Circ Sig Process 41:47–53

    Article  Google Scholar 

  339. Sagbas M, Ayten UE, Herencsar N, Minaei S (2013) Current and voltage mode multiphase sinusoidal oscillators using CBTAs. Radioengineering 22:24–33

    Google Scholar 

  340. Prasad D, Srivastava M, Bhaskar DR (2013) Electronically controllable fully-uncoupled explicit current-mode quadrature oscillator using VDTAs and grounded capacitors. Circ Syst 4:169–172

    Article  Google Scholar 

  341. Prasad D, Bhaskar DR (2012) Electronically controllable explicit current output sinusoidal oscillator employing single VDTA. ISRN Electron 5 p

    Google Scholar 

  342. Herencsar N, Sotner R, Koton J, Misurec J, Vrba K (2013) New Compact VM four-phase oscillator employing only single Z-copy VDTA and all grounded passive elements. Elektronoka Ir Elektrotechnika 19:87–90

    Google Scholar 

  343. Sotner R, Jerabek J, Herencsar N, Petrzela J, Vrba K, Kincl Z (2014) Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integr Circ Sig Process 81:121–136

    Article  Google Scholar 

  344. Srivastava M, Prasad D, Bhaskar DR (2014) Voltage mode quadrature oscillator employing single VDTA and grounded passive elements. Contemporary Eng Sci 7:1501–1507

    Google Scholar 

  345. Sotner R, Jerabek J, Herencsar N, Hrubos Z, Dostal T, Vrba K (2012) Study of adjustable gains for control of oscillation frequency and oscillation condition in 3R-2C oscillator. Radioengineering 21:392–402

    Google Scholar 

  346. Sotner R, Jerabek J, Langhammer L, Polak J, Herencsar N, Prokop R, Petrzela J, Jaikla W (2015) Comparison of two solutions of quadrature oscillators with linear control of frequency of oscillation employing modern commercially available devices. Circ Syst Signal Process. doi:10.1007/s00034-015-0015-7

    MathSciNet  Google Scholar 

  347. Ansari MS, Khan IA, Beg P, Nahhas AM (2013) Three phase mixed-mode CMOS VCO with grounded passive components. Electr Electron Eng 3:149–155

    Google Scholar 

  348. Jin J, Liang P (2013) Resistorless current-mode quadrature oscillator with grounded capacitors. Rev Roum Sci Technol Electrotech Energ 58:304–313

    Google Scholar 

  349. Soliman AM (2010) On the four terminal floating nullor (FTFN) and the operational mirror amplifier (OMA). J Active Passive Electron Devices 5:209–219

    Google Scholar 

  350. Un M, Kacar F (2008) Third generation current conveyor based current-mode first order all-pass filter and quadrature oscillator. J Electr Electron Eng 8:529–535

    Google Scholar 

  351. Lahiri A, Herencsar N (2012) CMOS-based active RC sinusoidal oscillator with four-phase quadrature outputs and single-resistance-controlled (SRC) tuning laws. Int J Electron Commun 66:1032–1037

    Article  Google Scholar 

  352. Yuan F, DiClemente D (2015) Hybrid voltage-controlled oscillator with low phase noise and large frequency tuning range. Analog Integr Circ Sig Process 82:471–478

    Article  Google Scholar 

  353. Tang A, Yuan F, Law E (2009) A new constant-Q CMOS active inductor with applications to low-noise oscillator. Analog Integr Circ Sig Process 58:77–80

    Article  Google Scholar 

  354. Leelasantitham A, Srisuchinwong B (2004) A low-power, high-frequency, all-NMOS all-current-mirror sinusoidal quadrature oscillator. Microelectron J 35:713–721

    Article  Google Scholar 

  355. Mayaram K (2000) Output voltage analysis for the MOS Colpitts oscillator. IEEE Trans Circ Syst I 47:260–263

    Article  Google Scholar 

  356. Thanachayanont A, Payne A (2000) CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEE Proc Circ Devices Syst 147:42–48

    Article  Google Scholar 

  357. Pookaiyudom S, Prasong V, Voraphichet A (1997) Tunable CMOS current-mode sinusoidal oscillator with inherent automatic amplitude control. Electron Lett 33:954–955

    Article  Google Scholar 

  358. Pookaiyudom S, Sitdhikorn R (1996) Current-differencing band-pass filter realization with application to high-frequency electronically tunable low-supply-voltage current mirror-only oscillator. IEEE Trans Circ Syst II 43:832–835

    Article  Google Scholar 

  359. Xu L, Lidfors S, Stadius K, Ryynanen J (2009) A digitally controlled 2.4GHz oscillator in 65-nm CMOS. Analog Integr Circ Sig Process 58:35–42

    Article  Google Scholar 

  360. Bodur S, Kuntman H, Cicekoglu O (2004) New first-order allpass filters employing single modified third generation current conveyor. J Electr Electron Eng 4:1141–1147

    Google Scholar 

  361. Abdalla K, Bhaskar DR, Senani R (2012) Configuration for realising a current-mode universal filter and dual-mode quadrature single resistor controlled oscillator. IET Circ Devices Syst 6:159–167

    Article  Google Scholar 

  362. Brabdstetter P, Klein L (2012) Novel Wien bridge oscillator design using functional block structure with current conveyors. Power Eng Electr Eng 10:13–16

    Google Scholar 

  363. Cabeza R, Carlosena A (1998) A cautionary note on stability of current conveyor-based circuits. Int J Circ Theor Appl 26:215–218

    Article  Google Scholar 

  364. Maheshwari S, Chaturvedi B (2013) Additional high input low output impedance analog networks. Active Passive Electron Comp, Article ID 574925:9p

    Google Scholar 

  365. Maheshwari S, Chaturvedi B (2012) High-input low-output impedance all-pass filters using one active element. IET Circ Devices Syst 6:103–110

    Article  Google Scholar 

  366. Biolkova V, Bajer J, Biolek D (2011) Four-phase oscillators employing two active elements. Radioengineering 20:334–339

    Google Scholar 

  367. Tekin SA (2014) Voltage summing current conveyor (VSCC) for oscillator and summing amplifier applications. J Microelectron Electron Comp Mater 44:159–167

    Google Scholar 

  368. Lahiri A (2010) New realizations of voltage-mode quadrature oscillators using current differencing buffered amplifiers. J Circ Syst Comput 19:1069–1076

    Article  Google Scholar 

  369. Keskin AU (2005) Voltage-mode high-Q band-pass filters and oscillators employing single CDBA and minimum number of components. Int J Electron 92:476–487

    Article  Google Scholar 

  370. Maheshwari S, Khan IA (2007) Novel single resistor controlled quadrature oscillator using two CDBAs. J Active Passive Electron Devices 2:137–142

    Google Scholar 

  371. Nandi R, Kar M, Das S (2009) Electronically tunable dual-input integrator employing a single CDBA and a multiplier: voltage controlled quadrature oscillator design. Active Passive Electron Comp Article ID835789

    Google Scholar 

  372. Un M, Kacar F (2009) Current mode all-pass filter using a single CDBA and its application. J Sci Technol 3:165–172

    Google Scholar 

  373. Soliman A (2011) Pathological realizations of the DVCC (CDBA) and applications to oscillators and filters. Int J Electron Commun 65:985–992

    Article  Google Scholar 

  374. Lahiri A (2011) Low-frequency quadrature sinusoidal oscillators using current differencing buffered amplifiers. Indian J Pure Appl Phys 49:423–428

    Google Scholar 

  375. Nandi R, Venkateswaran P, Das S (2013) Selective filters and tunable sinusoid oscillator using a CDBA. Circ Syst http://dx.doi.org/10.4236/cs.2013.42030

  376. Alzaher HA (2008) CMOS digitally programmable quadrature oscillators. Int J Circ Theor Appl 36:953–966

    Article  Google Scholar 

  377. Safari L, Minaei S, Yuce E (2013) CMOS first-order current-mode all-pass filter with electronic tuning capability and its applications. J Circ Syst Comput 22:17p

    Article  Google Scholar 

  378. Horng JW, Hou CL, Chang CM, Chung WY, Tang HW (2006) Current-mode multifunction filters and quadrature oscillator using unit gain cells. J Active Passive Electron Devices 1:247–258

    Google Scholar 

  379. Abuelma'atti MT (1992) Grounded capacitor current mode oscillator using single current follower. IEEE Trans Circ Syst I 39:1018–1020

    Article  Google Scholar 

  380. Chen JJ, Chen CC, Tsao AW, Liu SI (1991) Current-mode oscillators using single current follower. Electron Lett 27:2056–2059

    Article  Google Scholar 

  381. Abuelma'atti MT (2003) Current-mode multiphase oscillator using current followers. Microelectron J 25:457–461

    Article  Google Scholar 

  382. Abuelma'atti MT (1995) New current-mode oscillators using a single unity-gain current-follower. Active Passice Electron Comp 18:151–157

    Article  Google Scholar 

  383. Abuelma'atti MT (1995) New current-mode oscillators using unity-gain current-followers. Active Passive Electron Comp 18:159–164

    Article  Google Scholar 

  384. Maheshwari S (2014) Sinusoidal generator with π/4-shifted four/eight voltage outputs employing four grounded components and two/six active elements. Active Passive Electron Comp Article ID-480590:7p

    Google Scholar 

  385. Chaturvedi B, Maheshwari S (2013) Third-order quadrature oscillator circuit with current and voltage outputs. ISRN Electron Art-ID-385062:8p

    Google Scholar 

  386. Ibrahim MA, Kuntman H, Cicekoglu O (2003) First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC. Circ Syst Signal Process 22:525–536

    Article  MATH  Google Scholar 

  387. Metin B, Pal K, Cicekoglu O (2011) All-pass filters using DDCC- and MOSFET-based electronic resistor. Int J Circ Theor Appl 39:881–891

    Article  Google Scholar 

  388. Chautrvedi B, Maheshwari S (2012) An ideal voltage-mode all-pass filter and its application. J Commun Comput 2012:613–623

    Google Scholar 

  389. Saied AB, Salem SB, Masmoudi DS (2013) A quadrature oscillator based on a new “optimized DDCC” all-pass filter. Circ Syst 4:498–503

    Article  Google Scholar 

  390. Prasad D, Bhaskar DR, Srivastava M (2014) New single VDCC-based explicit current-mode SRCO employing all grounded passive components. Electronics 18:81–88

    Google Scholar 

  391. Chen HP, Lin MT (2007) Minimum components current-mode sinusoidal oscillator. Electron World 113:51

    Google Scholar 

  392. Maheshwari S, Mohan J, Chauhan DS (2009) Voltage-mode cascadable all-pass sections with two grounded passive components and one active element. IET Circ Devices Syst 4:113–122

    Article  Google Scholar 

  393. Tnagsrirat W (2008) Electronically tunable multi-terminal floating nullor and its applications. Radioengineering 17:3–7

    Google Scholar 

  394. Kumar V, Pal K, Gupta GK (2006) Novel single resistance controlled sinusoidal oscillator using FTFN and OTA. Indian J Pure Appl Phys 44:625–627

    Google Scholar 

  395. Kumar P, Senani R (2002) Bibliography on nullors and their applications in circuit analysis, synthesis and design. Analog Integr Circ Sig Process 33:65–76

    Article  Google Scholar 

  396. Abuelma'atti MT, Al-Zaher HA (2000) Grounded-capacitor current-mode sinusoidal oscillators with single-element controlled amplitude and phase using two FTFNs. Frequenz 54:87–89

    Google Scholar 

  397. Cam U, Kuntman H (1999) CMOS four terminal floating nullor design using a simple approach. Microelectron J 30:1187–1194

    Article  Google Scholar 

  398. Abuelma'atti MT, Al-Zaher HA (1997) Current-mode sinusoidal oscillator using single FTFN. Proc Natl Sci Council ROC (A) 21:161–165

    Google Scholar 

  399. Hou CL, Shen B, Hwang J (1995) Novel applications of operational mirrored amplifiers with buffers. Chung Yuan J 23:133–139

    Google Scholar 

  400. Liu SI, Liao YH (1996) Current-mode quadrature sinusoidal oscillator using single FTFN. Int J Electron 81:171–175

    Article  Google Scholar 

  401. Abuelma'atti MT, Al-Zaher HA (1998) Comments on ‘Current-mode quadrature sinusoidal oscillator using single FTFN’. Int J Electron 85:177–180

    Article  Google Scholar 

  402. Fakhfakh M, Pierzchala M (2015) Synthesis of active circuits by combining UGCs. Int J Electron. doi:10.1080/00207217.2015.1036378

    Google Scholar 

  403. Li Y (2010) Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineering 19:667–671

    Google Scholar 

  404. Summart S, Thongsopa C, Jaikla W (2014) New current-controlled current-mode sinusoidal qudrature oscillators using CDTAs. Int J Electron Commun 69:62–68

    Article  Google Scholar 

  405. Horng JW, Lee H, Wu JY (2010) Electronically tunable third-order quadrature oscillator using CDTAs. Radioengineering 19:326–330

    Google Scholar 

  406. Chen S, Wang J (2014) Current-mode current-tunable four-phase quadrature oscillator. Int J Light Electron Opt 125:6227–6230

    Article  Google Scholar 

  407. Thosdeekoraphat T, Summart S, Saetiaw C, Santalunai S, Thongsopa C (2013) CCTAs based current-mode quadrature oscillator with high output impedances. Int J Electron Electr Eng 1:52–56

    Article  Google Scholar 

  408. Huang SC, Ismail M (1994) Design and applications of a CMOS analog multiplier cell using the differential difference amplifier. Analog Integr Circ Signal process 6:209–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, V.K., Sharma, R.K. (2016). Sinusoidal Oscillator Realizations Using Modern Electronic Circuit Building Blocks. In: Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks. Springer, Cham. https://doi.org/10.1007/978-3-319-23712-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23712-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23711-4

  • Online ISBN: 978-3-319-23712-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics