Skip to main content
Log in

Novel Voltage-Mode All-Pass Filter Based on Using DVCCs

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel design for realizing a voltage-mode (VM) all-pass filter utilizing two differential voltage current conveyors (DVCCs) is proposed. Also, the suggested filter uses a canonical number of passive elements (one grounded capacitor and one resistor) without requiring any element matching condition. The proposed filter has high input and low output impedances, which make it suitable for cascading. The effects of the nonidealities of the DVCCs on the proposed design are investigated. As an application, a quadrature oscillator is designed using the proposed VM all-pass filter and an integrator. The proposed filter and oscillator circuits are simulated using the SPICE simulation program to confirm the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Çam, O. Çiçekoğlu, M. Gülsoy, H. Kuntman, New voltage and current mode first-order all-pass filters using single FTFN. Frequenz 54(7–8), 177–179 (2000)

    Google Scholar 

  2. O. Cicekoglu, H. Kuntman, S. Berk, All-pass filters using a single current conveyor. Int. J. Electron. 86(8), 947–955 (1999)

    Article  Google Scholar 

  3. H.P. Chen, K.H. Wu, Grounded-capacitor first-order filter using minimum components. IEICE Trans. Fund. E89-A(12), 3730–3731 (2006)

    Article  Google Scholar 

  4. W. Chiu, S.I. Liu, H.W. Tsao, J.J. Chen, CMOS differential difference current conveyors and their applications. IEE Proc. Circ. Dev. Syst. 143, 91–96 (1996)

    Article  MATH  Google Scholar 

  5. H.O. Elwan, A.M. Soliman, Novel CMOS differential voltage current conveyor and its applications. IEE Proc. Circ. Dev. Syst. 144(3), 195–200 (1997)

    Article  Google Scholar 

  6. S.J.G. Gift, The application of all-pass filters in the design of multiphase sinusoidal systems. Microelectron. J. 31, 9–13 (2000)

    Article  Google Scholar 

  7. M. Higashimura, Y. Fukui, Realization of all-pass networks using a current conveyor. Int. J. Electron. 65(2), 249–250 (1988)

    Article  Google Scholar 

  8. J.W. Horng, Current conveyors based allpass filters and quadrature oscillators employing grounded capacitors and resistors. Comput. Electr. Eng. 31(1), 81–92 (2005)

    Article  MATH  Google Scholar 

  9. J.W. Horng, C.L. Hou, C.M. Chang, Y.T. Lin, I.C. Shiu, W.Y. Chiu, First-order all-pass filter and sinusoidal oscillators using DDCCs. Int. J. Electron. 93(7), 457–466 (2006)

    Article  Google Scholar 

  10. M.A. Ibrahim, H. Kuntman, O. Cicekoglu, First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC. Circ. Syst. Signal Process. 22(5), 525–536 (2003)

    Article  MATH  Google Scholar 

  11. I.A Khan, S. Maheshwari, Simple first order all-pass section using a single CCII. Int. J. Electron. 87(3), 303–306 (2000)

    Article  Google Scholar 

  12. S. Maheshwari, New voltage and current-mode APS using current controlled conveyor. Int. J. Electron. 91(12), 735–743 (2004)

    Article  Google Scholar 

  13. S. Maheshwari, High input impedance VM-APSs with grounded passive elements. IET Circ. Dev. Syst. 1(1), 72–78 (2007)

    Article  MathSciNet  Google Scholar 

  14. S. Maheshwari, High input impedance voltage-mode first-order all-pass sections. Int. J. Circ. Theory Appl. 36(4), 511–522 (2008)

    Article  MathSciNet  Google Scholar 

  15. S. Maheshwari, A canonical voltage-controlled VM-APS with a grounded capacitor. Circ. Syst. Signal Process. 27, 123–132 (2008)

    Article  Google Scholar 

  16. S. Maheshwari, I.A Khan, Novel first order all-pass sections using a single CCIII. Int. J. Electron. 88(7), 773–778 (2001)

    Article  Google Scholar 

  17. S. Maheshwari, I.A. Khan, J. Mohan, Grounded capacitor first-order filters including canonical forms. J. Circ. Syst. Comput. 15, 289–300 (2006)

    Article  Google Scholar 

  18. B. Metin, O. Cicekoglu, K. Pal, DDCC based all-pass filters using minimum number of passive elements, in 50th Midwest Symposium on Circuits and Systems (MWSCAS 2007) (2007), pp. 518–521

  19. K. Pal, Realization of current conveyor all-pass networks. Int. J. Electron. 50(2), 165–168 (1981)

    Article  Google Scholar 

  20. N. Pandy, S.K. Paul, All-pass filters based on CCII- and CCCII-. Int. J. Electron. 91(8), 485–489 (2004)

    Article  Google Scholar 

  21. A.M. Soliman, Realization of operational-amplifier allpass network. Electron. Lett. 9, 67–68 (1973)

    Article  Google Scholar 

  22. A.M. Soliman, Generation of current conveyor based all-pass filters from op-amp based circuits. IEEE Trans. CAS-II 44(4), 324–330 (1997)

    Google Scholar 

  23. A. Toker, S. Ozcan, H. Kuntman, O. Cicekoglu, Supplementary all-pass sections with reduced number of passive elements using a single current conveyor. Int. J. Electron. 88(9), 969–976 (2001)

    Article  Google Scholar 

  24. G. Wilson, P.K. Chan, Floating CMOS resistor. Electron. Lett. 29, 306–307 (1993)

    Article  Google Scholar 

  25. E. Yuce, S. Minaei, Universal current-mode filters and parasitic impedance effects on the filter performances. Int. J. Circ. Theory Appl. 36, 161–171 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Minaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minaei, S., Yuce, E. Novel Voltage-Mode All-Pass Filter Based on Using DVCCs. Circuits Syst Signal Process 29, 391–402 (2010). https://doi.org/10.1007/s00034-010-9150-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9150-3

Keywords

Navigation