Skip to main content

Peripheral Hearing Structures in Fishes: Diversity and Sensitivity of Catfishes and Cichlids

  • Chapter
Fish Hearing and Bioacoustics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 877))

Abstract

Fishes have evolved an astonishing diversity of peripheral (accessory/ancillary) auditory structures to improve hearing based on their ability to transmit oscillations of gas bladder walls to the inner ears. So far it is unclear to what degree the size of the bladder and the linkage to the ear affect hearing in fishes. An interfamilial study in catfishes revealed that families which possess large, single swim bladders and one to four Weberian ossicles were more sensitive at higher frequencies (≥1 kHz) than families which have small, paired, and encapsulated bladders and one to two ossicles. An intrafamilial investigation in thorny catfishes (family Doradidae) revealed that small differences in bladder morphology did not affect hearing similarly. Members of the cichlid family possess an even larger variation in peripheral auditory structures than catfishes. The linkage between the swim bladder and ear can either be present via anterior extensions of the bladder or be completely absent (in contrast to catfishes). Representatives having large bladders with extensions had the best sensitivities. Cichlids lacking extensions had lower sensitivities above 0.3 kHz. Species with a vestigial swim bladder exhibited a smaller hearing bandwidth than those with larger swim bladder (maximum frequency: 0.7 kHz vs. 3 kHz). Catfishes and cichlids reveal that larger gas bladders and more pronounced connections between the swim bladder and the inner ear result in improved hearing at higher frequencies. The lack of a connection between a large bladder and the inner ear does not necessarily result in a smaller detectable frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RM (1962) The structure of the Weberian apparatus in the Cyprini. Proc Zool Soc Lond 139:451–473

    Article  Google Scholar 

  • Alexander RM (1964) The structure of the Weberian apparatus in the Siluri. Proc Zool Soc Lond 142:419–440

    Article  Google Scholar 

  • Birindelli JLO, Sousa LM (2009) Morphology of the gasbladder in thorny catfishes (Siluriformes: Doradidae). Proc Acad Natl Sci Philadelphia 158:261–296

    Article  Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of the bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314:452–466

    Article  CAS  PubMed  Google Scholar 

  • Braun CB, Grande T (2008) Evolution of peripheral mechanisms for the enhancement of sound reception. In: Webb JF, Popper AN, Fay RR (eds) Fish bioacoustics. Springer, New York, pp 99–144

    Chapter  Google Scholar 

  • Bridge TW, Haddon AC (1889) Contribution to the anatomy of fishes. I. The airbladder and Weberian ossicles in the Siluridae. Proc R Soc Lond 46:209–227

    Google Scholar 

  • Bridge TW, Haddon AC (1892) Contribution to the anatomy of fishes: II. The air-bladder and Weberian ossicles in the siluroid fishes. Proc R Soc Lond 52:139–157

    Article  Google Scholar 

  • Bridge TW, Haddon AC (1893) Contribution to the anatomy of fishes II. The air-bladder and Weberian ossicles in the siluroid fishes. Philos Trans R Soc B Biol Sci 184:65–333

    Article  Google Scholar 

  • Chardon M (1968) Anatomie comparee de l’appareil de Weber et des structures connexes chez les Siluriformes. Musee Royal de l’Afrique Centrale – Tervuren, Belgique Annales, Serie in 8. Sci Zool 169:1–273

    Google Scholar 

  • Chranilov NS (1927) Beiträge zur Kenntnis des Weber'schen Apparates der Ostariophysi 1. Vergleichend-anatomische Übersicht der Knochenelemente des Weber'schen Apparates bei Cypriniformes. Zool Jahrb (Anatomie) 49:501–597

    Google Scholar 

  • Chranilov NS (1929) Beiträge zur Kenntnis des Weber'schen Apparates der Ostariophysi: 2. Der Weber'sche Apparat bei Siluroidea. Zool Jahrb (Anatomie) 51:323–462

    Google Scholar 

  • Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol 132:203–207

    Article  Google Scholar 

  • Coombs S, Popper AN (1982) Structure and function of the auditory system in the clown knifefish, Notopterus chitala. J Exp Biol 97:225–239

    Google Scholar 

  • Fay RR, Popper AN (1974) Acoustic stimulation of the ear of the goldfish (Carassius auratus). J Exp Biol 61:243–260

    CAS  PubMed  Google Scholar 

  • Fay RR, Popper AN (1975) Modes of stimulation of the teleost ear. J Exp Biol 62:379–387

    CAS  PubMed  Google Scholar 

  • Hawkins AD (1981) The hearing abilities of fish. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 109–133

    Chapter  Google Scholar 

  • Hawkins AD (1986) Underwater sound and fish behaviour. In: Pitcher TJ (ed) The behaviour of teleost fishes. Croom Helm, London & Sydney, pp 114–151

    Chapter  Google Scholar 

  • Horodysky AZ, Brill RW, Fine ML, Musick JA, Latour RJ (2008) Acoustic pressure and particle thresholds in six sciaenid fishes. J Exp Biol 211:1504–1511

    Article  PubMed  Google Scholar 

  • Kaatz IM, Stewart DJ (2012) Bioacoustic variation of swimbladder disturbance sounds in neotropical doradoid catfishes (Siluriformes: Doradidae, Auchenipteridae): Potential morphological correlates. Curr Zool 58:171–188

    Google Scholar 

  • Kleerekoper H, Roggenkamp PA (1959) An experimental study on the effect of the swimbladder on hearing sensitivity in Ameiurus nebulosus (Lesueur). Can J Zool 37:1–8

    Google Scholar 

  • Ladich F (1999) Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behav Evol 53:288–304

    Article  CAS  PubMed  Google Scholar 

  • Ladich F (2010) Hearing: vertebrates. In: Breed MD, Moore J (eds) Encyclopedia of animal behaviour. Academic, Oxford, pp 54–60

    Chapter  Google Scholar 

  • Ladich F (2014) Diversity in hearing in fishes: ecoacoustical, communicative, and developmental constraints. In: Koeppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing. Springer Science+Business Media, New York, pp 289–321

    Google Scholar 

  • Ladich F (2015) Ontogenetic development of sound communication in fishes. In: Ladich F (ed) Sound Communication in Fishes. Springer-Verlag, Wien, pp 127–148

    Google Scholar 

  • Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fisheries 23:317–364

    Google Scholar 

  • Ladich F, Popper AN (2004) Parallel evolution in fish hearing organs. In: Manley G, Fay RR, Popper AN (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 95–127

    Chapter  Google Scholar 

  • Ladich F, Wysocki LE (2003) How does tripus extirpation affect auditory sensitivity in goldfish? Hear Res 182:119–129

    Article  PubMed  Google Scholar 

  • Ladich F, Wysocki LE (2009) Does speaker presentation effect auditory evoked potential threshold in goldfish? Comp Biochem Physiol A 154:341–346

    Article  Google Scholar 

  • Lechner W, Ladich F (2008) Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes. J Exp Biol 211:1681–1689

    Article  PubMed  Google Scholar 

  • Myrberg AA, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol 140:135–144

    Article  Google Scholar 

  • Nelson EM (1955) The morphology of the swim bladder and auditory bulla in the Holocentridae. Fieldiana: Zoology 37:121–130

    Google Scholar 

  • Platt C, Popper A (1981) Fine structure and function of the ear. In: Tavolga W, Popper A, Fay R (eds) Hearing and sound communication in fishes. Springer, New York, pp 3–36

    Chapter  Google Scholar 

  • Poggendorf D (1952) Die absolute Hörschwelle des Zwergwelses (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Z Vergl Physiol 34:222–257

    Article  Google Scholar 

  • Popper AN (2011) Auditory system morphology. In: Farrel AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 252–261

    Chapter  Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273:25–36

    Article  PubMed  Google Scholar 

  • Popper AN, Schilt CR (2008) Hearing and acoustic behavior: basic and applied considerations. In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics. Springer, New York, pp 17–48

    Chapter  Google Scholar 

  • Ramcharitar JU, Deng X, Ketten D, Popper AN (2004) Form and function in the unique inner ear of the teleost: the silver perch (Bairdiella chrysoura). J Comp Neurol 475:531–539

    Article  PubMed  Google Scholar 

  • Ramcharitar JU, Higgs DM, Popper AN (2006) Audition in sciaenid fishes with different swim bladder-inner ear configurations. J Acoust Soc Am 119:439–443

    Article  PubMed  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere. I. Das Gehörorgan der Fische und Amphibien. Samson & Wallin, Stockholm

    Google Scholar 

  • Sand O, Enger PS (1973) Evidence for an auditory function of the swimbladder in the cod. J Exp Biol 59:405–414

    CAS  PubMed  Google Scholar 

  • Schneider H (1941) Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen. Z Vergl Physiol 29:172–194

    Article  Google Scholar 

  • Schulz-Mirbach T, Metscher B, Ladich F (2012) Relationship between swim bladder morphology and hearing abilities—a case study on Asian and African cichlids. PLoS One 7, e42292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz-Mirbach T, Heß M, Metscher B, Ladich F (2013) A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microCT and 3D histological study. BMC Biol 11:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz-Mirbach T, Ladich F, Plath M, Metscher BD, Heß M (2014) Are accessory hearing structures linked to inner ear morphology? Insights from 3D orientation patterns of ciliary bundles in three cichlid species. Front Zool 11:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Stipetić E (1939) Über das Gehörorgan der Mormyriden. Z Vergl Physiol 26:740–752

    Article  Google Scholar 

  • Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bull Am Mus Nat Hist 126:177–240

    Google Scholar 

  • von Frisch K (1936) Über den Gehörsinn der Fische. Biol Rev 11:210–246

    Article  Google Scholar 

  • von Frisch K (1938) The sense of hearing in fish. Nature 141:8–11

    Article  Google Scholar 

  • von Frisch K, Stetter H (1932) Untersuchungen über den Sitz des Gehörsinnes bei der Elritze. Z Vergl Physiol 17:687–801

    Article  Google Scholar 

  • Weber EH (1819) Vergleichende Anatomie der Gehörwerkzeuge. Deut Arch Physiol 5:323–332

    Google Scholar 

  • Weber EH (1820) De aure et auditu hominis et animalium. Part I. De aure animalium aquatilium. Apud Gerhardum Fleischerum, Lipsiae

    Google Scholar 

  • Wysocki LE, Codarin A, Ladich F, Picciulin M (2009) Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea. J Acoust Soc Am 126:2100–2107

    Article  PubMed  Google Scholar 

  • Yan HY (1998) Auditory role of the suprabranchial chamber in gourami fish. J Comp Physiol A 183:325–333

    Article  CAS  PubMed  Google Scholar 

  • Yan HY, Curtsinger WS (2000) The otic gasbladder as an ancillary structure in a mormyrid fish. J Comp Physiol A 186:595–602

    Article  CAS  PubMed  Google Scholar 

  • Yan HY, Fine ML, Horn NS, Colon WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol A 186:435–445

    Article  CAS  PubMed  Google Scholar 

  • Zebedin A, Ladich F (2013) Does the hearing sensitivity in thorny catfishes depend on swim bladder morphology? PLoS One 8(6), e67049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to Arthur N. Popper and Richard R. Fay to celebrate more than 45 years of work in fish bioacoustics. I am grateful to have the opportunity to work and publish with both of them. Art invited me to his lab in 1998 and 1999 and introduced me to the field of inner ear structure in fishes, which resulted in a common paper on labyrinth fish ears in 2001. Subsequently we wrote a review on the parallel evolution of fish hearing organs. This cooperation with Art on ears resulted years later in several studies of mine with colleagues in Germany. Dick invited me to Fallmouth and Woods Hole in 1999. He impressed me by his knowledge in vertebrate hearing (see his 1988 book) and his interests in all fields and techniques including the auditory evoked potential (AEP) technique (which he never used). Our common “AEP” interest resulted in 2013 in a review on the auditory evoked potential audiometry in fishes in which we compared behavioral to AEP data and summarized all studies published within the last 15 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Ladich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ladich, F. (2016). Peripheral Hearing Structures in Fishes: Diversity and Sensitivity of Catfishes and Cichlids. In: Sisneros, J. (eds) Fish Hearing and Bioacoustics. Advances in Experimental Medicine and Biology, vol 877. Springer, Cham. https://doi.org/10.1007/978-3-319-21059-9_15

Download citation

Publish with us

Policies and ethics