Skip to main content

Colon Cancer: The Role of Sphingolipid Metabolic Enzymes

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Colorectal cancer is one of the most common tumors worldwide, with sustained incidence in developed countries and increasing incidence in developing countries. Although recent studies provide knowledge of the molecular signaling pathways that are implicated in colon carcinogenesis, treatments and outcomes still need further improvement. Bioactive sphingolipids, such as ceramide, sphingosine, and sphingosine-1-phosphate (S1P), are signaling molecules that regulate cellular events including cell proliferation, apoptosis, senescence, angiogenesis, and transformation in response to diverse stimuli. Ceramide and sphingosine mediate numerous cell-stress responses, including induction of apoptosis and cell senescence. In contrast, S1P plays pivotal roles in cell survival, migration, and inflammation. These sphingolipids with opposing roles can be quickly metabolized and catabolized within cells, suggesting that the balance between these potent bioactive lipids may dictate cell fate. In this chapter, we review the roles of these bioactive sphingolipids and their metabolic enzymes in colitis, colitis associated cancer, and colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

aCDase:

Acid CDase

ACER:

Alkaline CDase

alk-SMase:

Alkaline SMase

AOM:

l Azoxymethane

APC:

Adenomatous polyposis coli

aSMase:

Acid SMase

CAC:

Colitis-associated cancer

CDases:

Ceramidases

CerS:

Ceramide synthases

COX2:

Cyclooxygenase-2

CRC:

Colorectal cancer

DSS:

Dextran sodium sulfate

EGFR:

Epidermal growth factor receptor

FAP:

Familial adenomatous polyposis

IBD:

Inflammatory bowel disease

IL-6:

Interleukin-6

miRNAs:

microRNAs

MMR:

Mismatch repair

MSI:

Microsatellite instability

NaBT:

Sodium butyrate

nCDase:

Neutral CDase

NF-κB:

Nuclear factor kappa B

nSMase:

Neutral SMase

PGE2 :

Prostaglandin E2

PI3K:

Phosphatidylinositol 3-kinase

S1P:

Sphingosine-1-phosphate

S1PR:

S1P receptor

SM:

Sphingomyelins

SMases:

Sphingomyelinases

SphKs:

Sphingosine kinases

SPL:

Sphingosine-1-phosphate lyase

SPPs:

Sphingosine-1-phosphate Phosphatases

STAT3:

Signal transducer and activator of transcription 3

TIMP1:

Tissue inhibitor of metalloproteinase 1

TNBS:

2,4,6-Trinitrobenzenesulfonic acid

TNF-α:

Tumor necrosis factor alpha

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

WT:

Wild type

References

  1. Ferlay J et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. 2013 [cited 2014 February 14]. http://globocan.iarc.fr

  2. Stewart B, Wild C (2014) World Cancer Report 2014. International Agency for Research on Cancer. World Health Organization, Lyon, France

    Google Scholar 

  3. WHO Global Cancer Country Profiles. United States of America 2014 [cited 2014 February 16]. http://www.who.int/cancer/country-profiles/usa_en.pdf?ua=1

  4. Miyoshi Y et al (1992) Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci U S A 89(10):4452–4456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brensinger JD et al (1998) Variable phenotype of familial adenomatous polyposis in pedigrees with 3′ mutation in the APC gene. Gut 43(4):548–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96(10):2992–3003

    Article  CAS  PubMed  Google Scholar 

  7. Steinke V et al (2013) Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Dtsch Arztebl Int 110(3):32–38

    PubMed Central  PubMed  Google Scholar 

  8. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  PubMed  Google Scholar 

  9. Rajagopalan H et al (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418(6901):934

    Article  CAS  PubMed  Google Scholar 

  10. Samowitz WS et al (2005) Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 65(14):6063–6069

    Article  CAS  PubMed  Google Scholar 

  11. Samuels Y et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    Article  CAS  PubMed  Google Scholar 

  12. Velho S et al (2005) The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 41(11):1649–1654

    Article  CAS  PubMed  Google Scholar 

  13. Velho S et al (2008) BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic events in colorectal carcinogenesis? BMC Cancer 8:255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jonjic N et al (1997) Epidermal growth factor-receptor expression correlates with tumor cell proliferation and prognosis in gastric cancer. Anticancer Res 17(5B):3883–3888

    CAS  PubMed  Google Scholar 

  15. Gross ME et al (1991) Cellular growth response to epidermal growth factor in colon carcinoma cells with an amplified epidermal growth factor receptor derived from a familial adenomatous polyposis patient. Cancer Res 51(5):1452–1459

    CAS  PubMed  Google Scholar 

  16. Janakiram NB, Rao CV (2014) The role of inflammation in colon cancer. Adv Exp Med Biol 816:25–52

    Article  CAS  PubMed  Google Scholar 

  17. Danese S (2008) Inflammatory bowel disease and inflammation-associated colon cancer: partners in crime. Curr Drug Targets 9(5):360

    Article  CAS  PubMed  Google Scholar 

  18. Setia S, Nehru B, Sanyal SN (2014) Activation of NF-kappaB: bridging the gap between inflammation and cancer in colitis-mediated colon carcinogenesis. Biomed Pharmacother 68(1):119–128

    Article  CAS  PubMed  Google Scholar 

  19. Pyne NJ, Pyne S (2013) Sphingosine 1-phosphate is a missing link between chronic inflammation and colon cancer. Cancer Cell 23(1):5–7

    Article  CAS  PubMed  Google Scholar 

  20. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  CAS  PubMed  Google Scholar 

  21. Furuya H, Shimizu Y, Kawamori T (2011) Sphingolipids in cancer. Cancer Metastasis Rev 30(3-4):567–576

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Barros M et al (2014) Sphingolipids in colon cancer. Biochim Biophys Acta 1841(5):773–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nagahashi M et al (2014) Sphingosine-1-phosphate in chronic intestinal inflammation and cancer. Adv Biol Regul 54C:112–120

    Article  CAS  Google Scholar 

  24. Heffernan-Stroud LA, Obeid LM (2013) Sphingosine kinase 1 in cancer. Adv Cancer Res 117:201–235

    Article  CAS  PubMed  Google Scholar 

  25. Marchesini N, Hannun YA (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 82(1):27–44

    Article  CAS  PubMed  Google Scholar 

  26. Zhang P, Cheng Y, Duan RD (2013) Ursolic acid inhibits acid sphingomyelinase in intestinal cells. Phytother Res 27(2):173–178

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Y et al (2007) Curcumin decreases acid sphingomyelinase activity in colon cancer Caco-2 cells. Planta Med 73(8):725–730

    Article  CAS  PubMed  Google Scholar 

  28. Bauer J et al (2009) Lipid alterations in experimental murine colitis: role of ceramide and imipramine for matrix metalloproteinase-1 expression. PLoS One 4(9), e7197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sakata A et al (2007) Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology 122(1):54–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Osawa Y et al (2013) Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. J Clin Invest 123(2):834–843

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Duan RD et al (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278(40):38528–38536

    Article  CAS  PubMed  Google Scholar 

  32. Hertervig E et al (1997) Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer 79(3):448–453

    Article  CAS  PubMed  Google Scholar 

  33. Hertervig E et al (1999) Familial adenomatous polyposis is associated with a marked decrease in alkaline sphingomyelinase activity: a key factor to the unrestrained cell proliferation? Br J Cancer 81(2):232–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Selzner M et al (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61(3):1233–1240

    CAS  PubMed  Google Scholar 

  35. Cheng Y et al (1999) Ursodeoxycholic acid increases the activities of alkaline sphingomyelinase and caspase-3 in the rat colon. Scand J Gastroenterol 34(9):915–920

    Article  CAS  PubMed  Google Scholar 

  36. Duan RD et al (1998) Effects of ursodeoxycholate and other bile salts on levels of rat intestinal alkaline sphingomyelinase: a potential implication in tumorigenesis. Dig Dis Sci 43(1):26–32

    Article  CAS  PubMed  Google Scholar 

  37. Cheng Y, Ohlsson L, Duan RD (2004) Psyllium and fat in diets differentially affect the activities and expressions of colonic sphingomyelinases and caspase in mice. Br J Nutr 91(5):715–723

    Article  CAS  PubMed  Google Scholar 

  38. Sjoqvist U et al (2002) Chronic colitis is associated with a reduction of mucosal alkaline sphingomyelinase activity. Inflamm Bowel Dis 8(4):258–263

    Article  PubMed  Google Scholar 

  39. Zhang P et al (2008) Dietary sphingomyelin inhibits colonic tumorigenesis with an up-regulation of alkaline sphingomyelinase expression in ICR mice. Anticancer Res 28(6A):3631–3635

    CAS  PubMed  Google Scholar 

  40. Andersson D et al (2009) Expression of alkaline sphingomyelinase in yeast cells and anti-inflammatory effects of the expressed enzyme in a rat colitis model. Dig Dis Sci 54(7):1440–1448

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y et al (2015) Enhanced colonic tumorigenesis in alkaline sphingomyelinase (NPP7) knockout mice. Mol Cancer Ther 14(1):259–267

    Article  CAS  PubMed  Google Scholar 

  42. Hertervig E et al (2003) Reduction in alkaline sphingomyelinase in colorectal tumorigenesis is not related to the APC gene mutation. Int J Colorectal Dis 18(4):309–313

    PubMed  Google Scholar 

  43. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286(32):27855–27862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Duan RD et al (2001) Evidence for specific ceramidase present in the intestinal contents of rats and humans. Lipids 36(8):807–812

    Article  CAS  PubMed  Google Scholar 

  45. Lundgren P, Nilsson A, Duan RD (2001) Distribution and properties of neutral ceramidase activity in rat intestinal tract. Dig Dis Sci 46(4):765–772

    Article  CAS  PubMed  Google Scholar 

  46. Kono M et al (2006) Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281(11):7324–7331

    Article  CAS  PubMed  Google Scholar 

  47. Snider AJ et al (2012) Loss of neutral ceramidase increases inflammation in a mouse model of inflammatory bowel disease. Prostaglandins Other Lipid Mediat 99(3-4):124–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J Biol Chem 281(35):25001–25005

    Article  CAS  PubMed  Google Scholar 

  49. Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Voelkel-Johnson C, Hannun YA, El-Zawahry A (2005) Resistance to TRAIL is associated with defects in ceramide signaling that can be overcome by exogenous C6-ceramide without requiring down-regulation of cellular FLICE inhibitory protein. Mol Cancer Ther 4(9):1320–1327

    Article  CAS  PubMed  Google Scholar 

  51. White-Gilbertson S et al (2009) Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28(8):1132–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Schiffmann S et al (2009) The selective COX-2 inhibitor celecoxib modulates sphingolipid synthesis. J Lipid Res 50(1):32–40

    Article  CAS  PubMed  Google Scholar 

  53. Schiffmann S et al (2010) Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochem Pharmacol 80(11):1632–1640

    Article  CAS  PubMed  Google Scholar 

  54. Hartmann D et al (2012) Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 44(4):620–628

    Article  CAS  PubMed  Google Scholar 

  55. Liu H et al (2002) Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol 71:493–511

    Article  CAS  PubMed  Google Scholar 

  56. Fukuda Y, Kihara A, Igarashi Y (2003) Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochem Biophys Res Commun 309(1):155–160

    Article  CAS  PubMed  Google Scholar 

  57. Kawamori T et al (2006) Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 20(2):386–388

    CAS  PubMed  Google Scholar 

  58. Michaud J et al (2006) Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett 580(19):4607–4612

    Article  CAS  PubMed  Google Scholar 

  59. Tan SS et al (2014) Sphingosine kinase 1 promotes malignant progression in colon cancer and independently predicts survival of patients with colon cancer by competing risk approach in South Asian population. Clin Transl Gastroenterol 5, e51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Snider AJ et al (2009) A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J 23(1):143–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Kawamori T et al (2009) Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23(2):405–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Allende ML et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279(50):52487–52492

    Article  CAS  PubMed  Google Scholar 

  63. Moreira L, Castells A (2011) Cyclooxygenase as a target for colorectal cancer chemoprevention. Curr Drug Targets 12(13):1888–1894

    Article  CAS  PubMed  Google Scholar 

  64. Koehne CH, Dubois RN (2004) COX-2 inhibition and colorectal cancer. Semin Oncol 31(2 Suppl 7):12–21

    Article  CAS  PubMed  Google Scholar 

  65. Marnett LJ, DuBois RN (2002) COX-2: a target for colon cancer prevention. Annu Rev Pharmacol Toxicol 42:55–80

    Article  CAS  PubMed  Google Scholar 

  66. Fan Y, Mao R, Yang J (2013) NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185

    Article  CAS  PubMed  Google Scholar 

  67. Liang J et al (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23(1):107–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Liu SQ et al (2012) Sphingosine kinase 1 enhances colon cancer cell proliferation and invasion by upregulating the production of MMP-2/9 and uPA via MAPK pathways. Int J Colorectal Dis 27(12):1569–1578

    Article  PubMed  Google Scholar 

  69. Liu SQ et al (2013) Sphingosine kinase 1 promotes tumor progression and confers malignancy phenotypes of colon cancer by regulating the focal adhesion kinase pathway and adhesion molecules. Int J Oncol 42(2):617–626

    CAS  PubMed  Google Scholar 

  70. Huwiler A et al (2011) Loss of sphingosine kinase-1 in carcinoma cells increases formation of reactive oxygen species and sensitivity to doxorubicin-induced DNA damage. Br J Pharmacol 162(2):532–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Nemoto S et al (2009) Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 284(16):10422–10432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Kawahara S et al (2013) Sphingosine kinase 1 plays a role in the upregulation of CD44 expression through extracellular signal-regulated kinase signaling in human colon cancer cells. Anticancer Drugs 24(5):473–483

    Article  CAS  PubMed  Google Scholar 

  73. Furuya H et al (2013) Effect of sphingosine kinase 1 inhibition on blood pressure. FASEB J 27(2):656–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Maines LW et al (2008) Suppression of ulcerative colitis in mice by orally available inhibitors of sphingosine kinase. Dig Dis Sci 53(4):997–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Maines LW et al (2013) Efficacy of a novel sphingosine kinase inhibitor in experimental Crohn’s disease. Inflammopharmacology 18(2):73–85

    Article  CAS  Google Scholar 

  76. Chumanevich AA et al (2010) Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. Carcinogenesis 31(10):1787–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Antoon JW et al (2010) Antiestrogenic effects of the novel sphingosine kinase-2 inhibitor ABC294640. Endocrinology 151(11):5124–5135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Kharel Y et al (2012) Sphingosine kinase type 2 inhibition elevates circulating sphingosine 1-phosphate. Biochem J 447(1):149–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Xiao M, Liu Y, Zou F (2012) Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D. Exp Cell Res 318(1):43–52

    Article  CAS  PubMed  Google Scholar 

  80. Sankala HM et al (2007) Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 67(21):10466–10474

    Article  CAS  PubMed  Google Scholar 

  81. Reiss U et al (2004) Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. J Biol Chem 279(2):1281–1290

    Article  CAS  PubMed  Google Scholar 

  82. Oskouian B et al (2006) Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci U S A 103(46):17384–17389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Oskouian B, Saba J (2007) Sphingosine-1-phosphate metabolism and intestinal tumorigenesis: lipid signaling strikes again. Cell Cycle 6(5):522–527

    Article  CAS  PubMed  Google Scholar 

  84. Allende ML et al (2011) Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 286(9):7348–7358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Degagne E et al (2014) Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. J Clin Invest 124(12):5368–5384

    Article  PubMed Central  PubMed  Google Scholar 

  86. Chatterjee I et al (2011) Lipid phosphate phosphatase-3 regulates tumor growth via beta-catenin and CYCLIN-D1 signaling. Mol Cancer 10:51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407

    Article  CAS  PubMed  Google Scholar 

  88. Taha TA, Argraves KM, Obeid LM (2004) Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta 1682(1-3):48–55

    Article  CAS  PubMed  Google Scholar 

  89. Brinkmann V (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158(5):1173–1182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Camerer E et al (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119(7):1871–1879

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Montrose DC et al (2013) S1P(1) localizes to the colonic vasculature in ulcerative colitis and maintains blood vessel integrity. J Lipid Res 54(3):843–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Nguyen AV et al (2013) STAT3 in epithelial cells regulates inflammation and tumor progression to malignant state in colon. Neoplasia 15(9):998–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Sanada Y et al (2011) Therapeutic effects of novel sphingosine-1-phosphate receptor agonist W-061 in murine DSS colitis. PLoS One 6(9), e23933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Dong J et al (2014) Oral treatment with SEW2871, a sphingosine-1-phosphate type 1 receptor agonist, ameliorates experimental colitis in Interleukin-10 gene deficient mice. Clin Exp Immunol 177(1):94–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Song J et al (2008) A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J Pharmacol Exp Ther 324(1):276–283

    Article  CAS  PubMed  Google Scholar 

  96. Daniel C et al (2007) FTY720 ameliorates oxazolone colitis in mice by directly affecting T helper type 2 functions. Mol Immunol 44(13):3305–3316

    Article  CAS  PubMed  Google Scholar 

  97. Deguchi Y et al (2006) The S1P receptor modulator FTY720 prevents the development of experimental colitis in mice. Oncol Rep 16(4):699–703

    CAS  PubMed  Google Scholar 

  98. Radi ZA et al (2011) Pharmacologic evaluation of sulfasalazine, FTY720, and anti-IL-12/23p40 in a TNBS-induced Crohn’s disease model. Dig Dis Sci 56(8):2283–2291

    Article  CAS  PubMed  Google Scholar 

  99. Nagaoka Y et al (2008) Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast and colon cancer cells. Biol Pharm Bull 31(6):1177–1181

    Article  CAS  PubMed  Google Scholar 

  100. Budde K et al (2002) First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13(4):1073–1083

    CAS  PubMed  Google Scholar 

  101. Tedesco-Silva H et al (2004) FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation 77(12):1826–1833

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Institutes of Health grants R01CA124687 (T.K.) R01GM097741 (L.M.O.), P01CA097132 (L.M.O.) and VA MERIT Award (L.M.O.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley J. Snider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Furuya, H., Choi, S., Obeid, L.M., Kawamori, T., Snider, A.J. (2015). Colon Cancer: The Role of Sphingolipid Metabolic Enzymes. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_7

Download citation

Publish with us

Policies and ethics