Skip to main content

Advertisement

Log in

Sphingosine kinase 1 enhances colon cancer cell proliferation and invasion by upregulating the production of MMP-2/9 and uPA via MAPK pathways

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Sphingosine kinase (SphK) 1 is an oncogenic enzyme promoting transformation, proliferation, and survival of a number of human tumor cells. However, its effect on colon cancer cell behavior has not been fully clarified.

Methods

SphK1 plasmid or SphK1 shRNA transfection and N,N-dimethylsphingosine (DMS) was used to regulate the expression and activity of SphK1 in colon cancer line LOVO. Cell proliferation, apoptosis, invasion, and protein expression were detected by MTT, flow cytometry, transwell chambers model, and western blot. The levels of metalloproteinases-2/9 (MMP-2/9) and urokinase plasminogen activator (uPA) were detected by ELISA.

Results

Overexpression of SphK1 after plasmid transfection markedly enhanced LOVO cell viability and invasiveness and reduced cell apoptosis. In contrast, inhibition of SphK1 by DMS and shRNA significantly suppressed cell viability and invasiveness but promoted cell apoptosis. SphK1 increased the constitutive expression of extracellular signal-regulated kinase1/2 (ERK1/2) but reduced the constitutive expression of p38 mitogen-activated protein kinase (MAPK). Blocking ERK1/2 pathway inhibited the biological effects induced by overexpression of SphK1. Blocking p38 MAPK pathway reversed the effects of DMS and SphK1 shRNA. Moreover, SphK1 was required for the production of MMP-2/9 and uPA in tumor cells, which was suppressed by ERK1/2 inhibitor U0126, but enhanced by the p38 MAPK inhibitor SB203580.

Conclusions

SphK1 enhances colon cancer cell proliferation and invasiveness, meanwhile suppressing cell apoptosis. SphK1 promoting the secretion of MMP-2/9 and uPA via activation of ERK1/2 and suppression of p38 MAPK pathways maybe the molecular mechanisms for its regulation of the malignant behavior of colon cancer cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pyne S, Lee SC, Long J, Pyne NJ (2009) Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal 21:14–21. doi:10.1016/j.cellsig.2008.08.008

    Article  PubMed  CAS  Google Scholar 

  2. Jarman KE, Moretti PA, Zebol JR, Pitson SM (2010) Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 285:483–492. doi:10.1074/jbc.M109.068395

    Article  PubMed  CAS  Google Scholar 

  3. Shirai K, Kaneshiro T, Wada M, Furuya H, Bielawski J, Hannun YA, Obeid LM, Ogretmen B, Kawamori T (2011) A role of sphingosine kinase 1 in head and neck carcinogenesis. Cancer Prev Res Phila 4:454–462. doi:10.1158/1940-6207.CAPR-10-0299

    Article  PubMed  CAS  Google Scholar 

  4. Cuvillier O, Ader I, Bouquerel P, Brizuela L, Malavaud B, Mazerolles C, Rischmann P (2010) Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol 3:53–65. doi:10.2174/1874467211003020053

    PubMed  CAS  Google Scholar 

  5. Nava VE, Hobson JP, Murthy S, Milstien S, Spiegel S (2002) Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp Cell Res 281:115–127. doi:10.1006/excr.2002.5658

    Article  PubMed  CAS  Google Scholar 

  6. Kapitonov D, Allegood JC, Mitchell C, Hait NC, Almenara JA, Adams JK, Zipkin RE, Dent P, Kordula T, Milstien S, Spiegel S (2009) Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69:6915–6923. doi:10.1158/0008-5472.CAN-09-0664

    Article  PubMed  CAS  Google Scholar 

  7. Pchejetski D, Doumerc N, Golzio M, Naymark M, Teissié J, Kohama T, Waxman J, Malavaud B, Cuvillier O (2008) Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 7:1836–1845. doi:10.1158/1535-7163.MCT-07-2322

    Article  PubMed  CAS  Google Scholar 

  8. Shida D, Fang X, Kordula T, Takabe K, Lépine S, Alvarez SE, Milstien S, Spiegel S (2008) Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 68:6569–6577. doi:10.1158/0008-5472.CAN-08-0411

    Article  PubMed  CAS  Google Scholar 

  9. Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9:662–673. doi:10.2174/138945008785132402

    Article  PubMed  CAS  Google Scholar 

  10. Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J, Hannun YA, Obeid LM (2009) Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23:405–414. doi:10.1096/fj.08-117572

    Article  PubMed  CAS  Google Scholar 

  11. Kohno M, Momoi M, Oo ML, Paik JH, Lee YM, Venkataraman K, Ai Y, Ristimaki AP, Fyrst H, Sano H, Rosenberg D, Saba JD, Proia RL, Hla T (2006) Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol 26:7211–7223. doi:10.1128/MCB.02341-05

    Article  PubMed  CAS  Google Scholar 

  12. Morris MA, Dawson CW, Young LS (2009) Role of the Epstein-Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma. Future Oncol 5:811–825. doi:10.2217/fon.09.53

    Article  PubMed  CAS  Google Scholar 

  13. Ansari KM, Das M (2010) Skin tumor promotion by argemone oil/alkaloid in mice: evidence for enhanced cell proliferation, ornithine decarboxylase, cyclooxygenase-2 and activation of MAPK/NF-kappaB pathway. Food Chem Toxicol 48:132–138. doi:10.1016/j.fct.2009.09.029

    Article  PubMed  CAS  Google Scholar 

  14. Shieh JM, Chiang TA, Chang WT, Chao CH, Lee YC, Huang GY, Shih YX, Shih YW (2010) Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-kappaB and AP-1 via ERK signaling pathway in A549 human lung cancer cells. Mol Cell Biochem 335:181–193. doi:10.1007/s11010-009-0254-7

    Article  PubMed  CAS  Google Scholar 

  15. Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH (2006) Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast–osteoblast coupling. EMBO J 25:5840–5851. doi:10.1038/sj.emboj.7601430

    Article  PubMed  CAS  Google Scholar 

  16. Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 17:1411–1421. doi:10.1096/fj.02-1038com

    Article  PubMed  CAS  Google Scholar 

  17. Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB, Wilson S, Koul HK (2010) p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res 70:832–841. doi:10.1158/0008-5472.CAN-09-2918

    Article  PubMed  CAS  Google Scholar 

  18. Oskouian B, Saba J (2007) Sphingosine-1-phosphate metabolism and intestinal tumorigenesis: lipid signaling strikes again. Cell Cycle 6:522–527. doi:10.4161/cc.6.5.3903

    Article  PubMed  CAS  Google Scholar 

  19. Nemoto S, Nakamura M, Osawa Y, Kono S, Itoh Y, Okano Y, Murate T, Hara A, Ueda H, Nozawa Y, Banno Y (2009) Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 284:10422–10432. doi:10.1074/jbc.M900735200

    Article  PubMed  CAS  Google Scholar 

  20. Wang H, Maurer BJ, Liu YY, Wang E, Allegood JC, Kelly S, Symolon H, Liu Y, Merrill AH Jr, Gouazé-Andersson V, Yu JY, Giuliano AE, Cabot MC (2008) N-(4-Hydroxyphenyl) retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing. Mol Cancer Ther 7:2967–2976. doi:10.1158/1535-7163.MCT-08-0549

    Article  PubMed  CAS  Google Scholar 

  21. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405. doi:10.1016/j.bbadis.2009.12.009

    Article  PubMed  CAS  Google Scholar 

  22. Duffy A, Kummar S (2009) Targeting mitogen-activated protein kinase (MEK) in solid tumors. Target Oncol 4:267–273. doi:10.1007/s11523-009-0125-x

    Article  PubMed  Google Scholar 

  23. Russo M, Mupo A, Spagnuolo C, Russo GL (2010) Exploring death receptor pathways as selective targets in cancer therapy. Biochem Pharmacol 80:674–682. doi:10.1016/j.bcp.2010.03.011

    Article  PubMed  CAS  Google Scholar 

  24. Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, Zhou JR, Thiagalingam S (2011) Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res 71:998–1008. doi:10.1158/0008-5472.CAN-09-3269

    Article  PubMed  CAS  Google Scholar 

  25. van Houdt WJ, de Bruijn MT, Emmink BL, Raats D, Hoogwater FJ, Borel Rinkes IH, Kranenburg O (2010) Oncogenic K-ras activates p38 to maintain colorectal cancer cell proliferation during MEK inhibition. Cell Oncol 32:245–257

    Google Scholar 

  26. Choo EJ, Rhee YH, Jeong SJ, Lee HJ, Kim HS, Ko HS, Kim JH, Kwon TR, Jung JH, Kim JH, Lee HJ, Lee EO, Kim DK, Chen CY, Kim SH (2011) Anethole exerts antimetatstaic activity via inhibition of matrix metalloproteinase 2/9 and AKT/mitogen-activated kinase/nuclear factor kappa B signaling pathways. Biol Pharm Bull 34:41–46. doi:10.1248/bpb.34.41

    Article  PubMed  CAS  Google Scholar 

  27. Chen NH, Liu JW, Zhong JJ (2008) Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J Pharmacol Sci 108:212–216. doi:10.1254/jphs.SC0080019

    Article  PubMed  CAS  Google Scholar 

  28. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112:3–25. doi:10.1016/j.acthis.2008.11.022

    Article  PubMed  CAS  Google Scholar 

  29. McMahon B, Kwaan HC (2008) The plasminogen activator system and cancer. Pathophysiol Haemost Thromb 36:184–194. doi:10.1159/000175156

    Article  PubMed  Google Scholar 

  30. Liu WH, Chang LS (2010) Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca(2+)/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-jun pathway. J Cell Physio 224:775–785. doi:10.1002/jcp.22180

    Article  CAS  Google Scholar 

  31. Ho ML, Chen PN, Chu SC, Kuo DY, Kuo WH, Chen JY, Hsieh YS (2010) Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr Cancer 62:505–516. doi:10.1080/01635580903441261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 30760275) and Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (No. 0832008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-An Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SQ., Huang, JA., Qin, MB. et al. Sphingosine kinase 1 enhances colon cancer cell proliferation and invasion by upregulating the production of MMP-2/9 and uPA via MAPK pathways. Int J Colorectal Dis 27, 1569–1578 (2012). https://doi.org/10.1007/s00384-012-1510-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-012-1510-y

Keywords

Navigation