Skip to main content

Sphingoproteomics: Proteomic Strategies to Examine Sphingolipid Biology

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Interest in sphingolipids has increased in the past couple of decades as the number of biological activities identified has greatly expanded. These include roles in inflammation, proliferation, survival, and metastasis. Sphingolipids can exert these effects through an increasing number of identified interacting cellular targets. To facilitate the understanding of the intrinsic biology of sphingolipids and the development of sphingolipid-based therapeutics, further knowledge is needed. Various analytical protocols assist this endeavor, with mass spectrometry-based techniques seeing increasing usage, especially for measuring steady-state lipid levels. The area of mass spectrometry-based proteomics is also seeing increased usage in the study of lipid biology. This chapter provides an introduction to hypothesis-generating and hypothesis-testing protein-based analytical approaches to investigate sphingolipids and sphingolipid-metabolizing enzymes. These tools can serve to identify how sphingolipids regulate the proteome, to define how post-translational modifications control enzymatic activity, to identify protein–protein and protein–lipid interactions as well as to facilitate inhibitor development, among other concepts. These approaches can help delineate the roles and consequences of perturbations of sphingolipid metabolism in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartmann D et al (2012) Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 44(4):620–628

    Article  CAS  PubMed  Google Scholar 

  2. Karahatay S et al (2007) Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett 256(1):101–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Saddoughi SA et al (2011) Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C(1)(8)-ceramide as a novel biomarker for monitoring response. Clin Cancer Res 17(18):6097–6105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Alberg AJ et al (2013) Plasma sphingolipids and lung cancer: a population-based, nested case-control study. Cancer Epidemiol Biomarkers Prev 22(8):1374–1382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jiang Y et al (2013) Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules 3(3):435–448

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fillet M et al (2005) Differential expression of proteins in response to ceramide-mediated stress signal in colon cancer cells by 2-D gel electrophoresis and MALDI-TOF-MS. J Proteome Res 4(3):870–880

    Article  CAS  PubMed  Google Scholar 

  8. Renert AF et al (2009) The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells. J Proteome Res 8(10):4810–4822

    Article  CAS  PubMed  Google Scholar 

  9. Kota V et al (2013) 2’-hydroxy C16-ceramide induces apoptosis-associated proteomic changes in C6 glioma cells. J Proteome Res 12(10):4366–4367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Parent N et al (2009) Proteomic analysis of enriched lysosomes at early phase of camptothecin-induced apoptosis in human U-937 cells. J Proteomics 72(6):960–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim SY et al (2009) Proteomic identification of proteins translocated to membrane microdomains upon treatment of fibroblasts with the glycosphingolipid, C8-beta-D-lactosylceramide. Proteomics 9(18):4321–4328

    Article  CAS  PubMed  Google Scholar 

  12. Everley RA et al (2013) Increasing throughput in targeted proteomics assays: 54-plex quantitation in a single mass spectrometry run. Anal Chem 85(11):5340–5346

    Article  CAS  PubMed  Google Scholar 

  13. McClatchy DB, Yates JR 3rd (2008) Stable isotope labeling in mammals (SILAM). Methods Mol Biol 1156:133–146

    Article  CAS  Google Scholar 

  14. Pozniak Y, Geiger T (2014) Design and application of super-SILAC for proteome quantification. Methods Mol Biol 1188:281–291

    Article  PubMed  Google Scholar 

  15. Zhou F et al (2013) Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat Commun 4:2171

    PubMed Central  PubMed  Google Scholar 

  16. Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Article  CAS  PubMed  Google Scholar 

  17. Lundby A et al (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3:876

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Hao P, Guo T, Sze SK (2011) Simultaneous analysis of proteome, phospho- and glycoproteome of rat kidney tissue with electrostatic repulsion hydrophilic interaction chromatography. PLoS One 6(2), e16884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mertins P et al (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10(7):634–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gillet LC et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Momin AA et al (2011) A method for visualization of “omic” datasets for sphingolipid metabolism to predict potentially interesting differences. J Lipid Res 52(6):1073–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lundberg E et al (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450

    Article  PubMed Central  PubMed  Google Scholar 

  23. Schwanhausser B et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  PubMed  CAS  Google Scholar 

  24. Gerber SA et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Anderson NL et al (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3(2):235–244

    Article  CAS  PubMed  Google Scholar 

  26. Bereman MS et al (2012) The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics 12(8):1134–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mohammed Y et al (2014) PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J Proteomics 106C:51–161

    Google Scholar 

  28. Wilhelm M et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587

    Article  CAS  PubMed  Google Scholar 

  29. Kim MS et al (2014) A draft map of the human proteome. Nature 509(7502):575–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zeidan YH, Hannun YA (2007) Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation. J Biol Chem 282(15):11549–11561

    Article  CAS  PubMed  Google Scholar 

  31. Parent N et al (2011) Protein kinase C-delta isoform mediates lysosome labilization in DNA damage-induced apoptosis. Int J Oncol 38(2):313–324

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Pitson SM et al (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22(20):5491–5500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Franzen R et al (2002) Nitric oxide induces degradation of the neutral ceramidase in rat renal mesangial cells and is counterregulated by protein kinase C. J Biol Chem 277(48):46184–46190

    Article  CAS  PubMed  Google Scholar 

  34. Galadari S et al (2006) Identification of a novel amidase motif in neutral ceramidase. Biochem J 393(Pt 3):687–695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tada E et al (2010) Activation of ceramidase and ceramide kinase by vanadate via a tyrosine kinase-mediated pathway. J Pharmacol Sci 114(4):420–432

    Article  CAS  PubMed  Google Scholar 

  36. Chen WQ et al (2010) Ceramide kinase profiling by mass spectrometry reveals a conserved phosphorylation pattern downstream of the catalytic site. J Proteome Res 9(1):420–429

    Article  CAS  PubMed  Google Scholar 

  37. Ferlinz K et al (2001) Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem 276(38):35352–35360

    Article  CAS  PubMed  Google Scholar 

  38. Schulze H, Schepers U, Sandhoff K (2007) Overexpression and mass spectrometry analysis of mature human acid ceramidase. Biol Chem 388(12):1333–1343

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez J et al (2008) Does trypsin cut before proline? J Proteome Res 7(1):300–305

    Article  CAS  PubMed  Google Scholar 

  40. Stahelin RV et al (2005) The mechanism of membrane targeting of human sphingosine kinase 1. J Biol Chem 280(52):43030–43038

    Article  CAS  PubMed  Google Scholar 

  41. Pflieger D et al (2008) Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation. Mol Cell Proteomics 7(2):326–346

    Article  CAS  PubMed  Google Scholar 

  42. Glibert P et al (2015) Phospho-iTRAQ: assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry. J Proteome Res 14(2):839–849

    Article  CAS  PubMed  Google Scholar 

  43. Frese CK et al (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res 10(5):2377–2388

    Article  CAS  PubMed  Google Scholar 

  44. Kumagai K, Kawano-Kawada M, Hanada K (2014) Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells. J Biol Chem 289(15):10748–10760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cvetkovic A et al (2010) Microbial metalloproteomes are largely uncharacterized. Nature 466(7307):779–782

    Article  CAS  PubMed  Google Scholar 

  46. Lothian A et al (2013) Metalloproteomics: principles, challenges and applications to neurodegeneration. Front Aging Neurosci 5:35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Yannone SM et al (2012) Metals in biology: defining metalloproteomes. Curr Opin Biotechnol 23(1):89–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Fujita T et al (2004) Delta-catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1. Biochem J 382(Pt 2):717–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Leclercq TM et al (2008) Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem 283(15):9606–9614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sun J et al (2006) FHL2/SLIM3 decreases cardiomyocyte survival by inhibitory interaction with sphingosine kinase-1. Circ Res 99(5):468–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Fukuda Y et al (2004) Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim Biophys Acta 1636(1):12–21

    Article  CAS  PubMed  Google Scholar 

  52. Lacana E et al (2002) Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J Biol Chem 277(36):32947–32953

    Article  CAS  PubMed  Google Scholar 

  53. Maceyka M et al (2004) Aminoacylase 1 is a sphingosine kinase 1-interacting protein. FEBS Lett 568(1–3):30–34

    Article  CAS  PubMed  Google Scholar 

  54. Zebol JR et al (2009) The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1. Int J Biochem Cell Biol 41(4):822–827

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi S et al (2002) Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. J Biol Chem 277(36):33319–33324

    Article  CAS  PubMed  Google Scholar 

  56. Maceyka M et al (2008) Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol Cell Biol 28(18):5687–5697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Olivera A et al (1998) Purification and characterization of rat kidney sphingosine kinase. J Biol Chem 273(20):12576–12583

    Article  CAS  PubMed  Google Scholar 

  58. Jarman KE et al (2010) Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 285(1):483–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Yamane D et al (2009) Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 284(20):13648–13659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Barr RK et al (2008) Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 283(50):34994–35002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Urtz N et al (2004) Early activation of sphingosine kinase in mast cells and recruitment to FcepsilonRI are mediated by its interaction with Lyn kinase. Mol Cell Biol 24(19):8765–8777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Olivera A et al (2006) IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 281(5):2515–2525

    Article  CAS  PubMed  Google Scholar 

  63. Xia P et al (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 277(10):7996–8003

    Article  CAS  PubMed  Google Scholar 

  64. Gamble JR et al (2009) Sphingosine kinase-1 associates with integrin {alpha}V{beta}3 to mediate endothelial cell survival. Am J Pathol 175(5):2217–2225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Laviad EL et al (2012) Modulation of ceramide synthase activity via dimerization. J Biol Chem 287(25):21025–21033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Azuma N et al (1994) Stimulation of acid ceramidase activity by saposin D. Arch Biochem Biophys 311(2):354–357

    Article  CAS  PubMed  Google Scholar 

  67. Adam-Klages S et al (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86(6):937–947

    Article  CAS  PubMed  Google Scholar 

  68. Ahn KH et al (2013) Identification of heat shock protein 60 as a regulator of Neutral Sphingomyelinase 2 and its role in Dopamine uptake. PLoS One 8(6), e67216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Miteva YV, Budayeva HG, Cristea IM (2013) Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 85(2):749–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Paoletti AC et al (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 103(50):18928–18933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wang M et al (2012) PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteomics 11(8):492–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Teo G et al (2014) SAINTexpress: improvements and additional features in significance analysis of INTeractome software. J Proteomics 100:37–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Choi H et al (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8(1):70–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Sowa ME et al (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2):389–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Rinner O et al (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotechnol 25(3):345–352

    Article  CAS  PubMed  Google Scholar 

  76. Jager S et al (2011) Global landscape of HIV-human protein complexes. Nature 481(7381):365–370

    PubMed Central  PubMed  Google Scholar 

  77. Tackett AJ et al (2005) I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4(5):1752–1756

    Article  CAS  PubMed  Google Scholar 

  78. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3(12):981–983

    Article  CAS  PubMed  Google Scholar 

  79. Mellacheruvu D et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10(8):730–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wang X, Huang L (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics 7(1):46–57

    Article  PubMed  CAS  Google Scholar 

  81. Jurneczko E, Barran PE (2011) How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136(1):20–28

    Article  CAS  PubMed  Google Scholar 

  82. Lanucara F et al (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6(4):281–294

    Article  CAS  PubMed  Google Scholar 

  83. Huang RY, Chen G (2014) Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem 406(26):6541–6558

    Article  CAS  PubMed  Google Scholar 

  84. Jaswal SS (1834) Biological insights from hydrogen exchange mass spectrometry. Biochim Biophys Acta 6:1188–1201

    Google Scholar 

  85. Jorgensen TJ et al (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J Am Chem Soc 127(8):2785–2793

    Article  CAS  PubMed  Google Scholar 

  86. Jorgensen TJ et al (2005) Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides. Mol Cell Proteomics 4(12):1910–1919

    Article  PubMed  CAS  Google Scholar 

  87. Zehl M et al (2008) Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J Am Chem Soc 130(51):17453–17459

    Article  CAS  PubMed  Google Scholar 

  88. Rand KD et al (2008) Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J Am Chem Soc 130(4):1341–1349

    Article  CAS  PubMed  Google Scholar 

  89. Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173(3):530–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Stengel F, Aebersold R, Robinson CV (2012) Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics 11(3):R111.014027<>

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Bruce JE (2012) In vivo protein complex topologies: sights through a cross-linking lens. Proteomics 12(10):1565–1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Paramelle D et al (2013) Chemical cross-linkers for protein structure studies by mass spectrometry. Proteomics 13(3–4):438–456

    Article  CAS  PubMed  Google Scholar 

  93. Leitner A et al (2014) Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc Natl Acad Sci U S A 111(26):9455–9460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Fischer L, Chen ZA, Rappsilber J (2013) Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J Proteomics 88:120–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Hankins JL et al (2013) Ceramide 1-phosphate mediates endothelial cell invasion via the annexin a2-p11 heterotetrameric protein complex. J Biol Chem 288(27):19726–19738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Alvarez SE et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301):1084–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Heinrich M et al (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18(19):5252–5263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Huwiler A et al (1996) Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A 93(14):6959–6963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Zhang Y et al (1997) Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89(1):63–72

    Article  CAS  PubMed  Google Scholar 

  100. Galadari S et al (1998) Purification and characterization of ceramide-activated protein phosphatases. Biochemistry 37(32):11232–11238

    Article  CAS  PubMed  Google Scholar 

  101. Lozano J et al (1994) Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem 269(30):19200–19202

    CAS  PubMed  Google Scholar 

  102. Bourbon NA, Yun J, Kester M (2000) Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem 275(45):35617–35623

    Article  CAS  PubMed  Google Scholar 

  103. Woodcock JM et al (2010) Sphingosine and FTY720 directly bind pro-survival 14-3-3 proteins to regulate their function. Cell Signal 22(9):1291–1299

    Article  CAS  PubMed  Google Scholar 

  104. Borch J, Roepstorff P, Moller-Jensen J (2011) Nanodisc-based co-immunoprecipitation for mass spectrometric identification of membrane-interacting proteins. Mol Cell Proteomics 10(7):O110.006775

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Kota V, Szulc ZM, Hama H (2012) Identification of C(6)-ceramide-interacting proteins in D6P2T Schwannoma cells. Proteomics 12(13):2179–2184

    Article  CAS  PubMed  Google Scholar 

  106. Habrukowich C et al (2010) Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. J Biol Chem 285(35):26825–26831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Stiban J, Tidhar R, Futerman AH (2010) Ceramide synthases: roles in cell physiology and signaling. Adv Exp Med Biol 688:60–71

    Article  CAS  PubMed  Google Scholar 

  108. Vunnam RR, Radin NS (1979) Short chain ceramides as substrates for glucocerebroside synthetase. Differences between liver and brain enzymes. Biochim Biophys Acta 573(1):73–82

    Article  CAS  PubMed  Google Scholar 

  109. Wijesinghe DS et al (2005) Substrate specificity of human ceramide kinase. J Lipid Res 46(12):2706–2716

    Article  CAS  PubMed  Google Scholar 

  110. Van Overloop H, Gijsbers S, Van Veldhoven PP (2006) Further characterization of mammalian ceramide kinase: substrate delivery and (stereo)specificity, tissue distribution, and subcellular localization studies. J Lipid Res 47(2):268–283

    Article  PubMed  CAS  Google Scholar 

  111. Senkal CE et al (2011) Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J Biol Chem 286(49):42446–42458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Delon C et al (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 279(43):44763–44774

    Article  CAS  PubMed  Google Scholar 

  113. Lee SJ et al (2014) Probing conformational change of intrinsically disordered alpha-synuclein to helical structures by distinctive regional interactions with lipid membranes. Anal Chem 86(3):1909–1916

    Article  CAS  PubMed  Google Scholar 

  114. Marcoux J et al (2013) Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci U S A 110(24):9704–9709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Eckford PD, Sharom FJ (2005) The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem J 389(Pt 2):517–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Ciociola AA, Cohen LB, Kulkarni P (2014) How drugs are developed and approved by the FDA: current process and future directions. Am J Gastroenterol 109(5):620–623

    Article  PubMed  Google Scholar 

  117. Allende ML et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279(50):52487–52492

    Article  CAS  PubMed  Google Scholar 

  118. Bandhuvula P et al (2005) The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J Biol Chem 280(40):33697–33700

    Article  CAS  PubMed  Google Scholar 

  119. Tonelli F et al (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22(10):1536–1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Lahiri S et al (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem 284(24):16090–16098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Payne SG et al (2007) The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109(3):1077–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Paugh SW et al (2006) Sphingosine and its analog, the immunosuppressant 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol, interact with the CB1 cannabinoid receptor. Mol Pharmacol 70(1):41–50

    CAS  PubMed  Google Scholar 

  123. Cingolani F et al (2014) Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. J Lipid Res 55(8):1711–1720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Wang K et al (2012) Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics 9(3):293–310

    Article  CAS  PubMed  Google Scholar 

  125. Liu Y, Guo M (2014) Chemical proteomic strategies for the discovery and development of anticancer drugs. Proteomics 14(4–5):399–411

    Article  CAS  PubMed  Google Scholar 

  126. Lukman S, Verma CS, Fuentes G (2014) Exploiting protein intrinsic flexibility in drug design. Adv Exp Med Biol 805:245–269

    Article  CAS  PubMed  Google Scholar 

  127. Huber W, Mueller F (2006) Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Des 12(31):3999–4021

    Article  CAS  PubMed  Google Scholar 

  128. Strickland EC et al (2013) Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc 8(1):148–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Tran DT, Adhikari J, Fitzgerald MC (2014) SILAC-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol Cell Proteomics 13(7):1800–1813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. West GM et al (2010) Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc Natl Acad Sci U S A 107(20):9078–9082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Cancer Society and P01 CA171983. The authors would like to thank Kevin Fox for the creation of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd E. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stanley, B.A., Deering, T., Fox, T.E. (2015). Sphingoproteomics: Proteomic Strategies to Examine Sphingolipid Biology. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_16

Download citation

Publish with us

Policies and ethics