Skip to main content

Advertisement

Log in

Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Characterization of therapeutic drugs is a crucial step in drug development in the biopharmaceutical industry. Analysis of protein therapeutics is a challenging task because of the complexities associated with large molecular size and 3D structures. Recent advances in hydrogen/deuterium-exchange mass spectrometry (HDX-MS) have provided a means to assess higher-order structure of protein therapeutics in solution. In this review, the principles and procedures of HDX-MS for protein therapeutics characterization are presented, focusing on specific applications of epitope mapping for protein–protein interactions and higher-order structure comparison studies for conformational dynamics of protein therapeutics.

HDX of protein backbone amide hydrogen

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39

    CAS  Google Scholar 

  2. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10(5):345–352

    CAS  Google Scholar 

  3. Elvin JG, Couston RG, van der Walle CF (2013) Therapeutic antibodies: market considerations, disease targets and bioprocessing. Int J Pharm 440(1):83–98

    CAS  Google Scholar 

  4. Bradbury A (2010) The antibody society. mAbs 2(3):211–211

    Google Scholar 

  5. Aggarwal S (2007) What's fueling the biotech engine? Nat Biotech 25(10):1097–1104

    CAS  Google Scholar 

  6. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S (2012) Characterization of therapeutic antibodies and related products. Anal Chem 85(2):715–736

    Google Scholar 

  7. Beck A, Sanglier-Cianférani S, Van Dorsselaer A (2012) Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem 84(11):4637–4646

    CAS  Google Scholar 

  8. Rebolj K, Pahovnik D, Žagar E (2012) Characterization of a protein conjugate using an asymmetrical-flow field-flow fractionation and a size-exclusion chromatography with multi-detection system. Anal Chem 84(17):7374–7383

    CAS  Google Scholar 

  9. Hu GF, Vallee BL (1994) A gel retardation assay for the interaction of proteins and carbohydrates by fluorophore-assisted carbohydrate electrophoresis. Anal Biochem 218(1):185–191

    CAS  Google Scholar 

  10. Yan C, Yang B, Yu Z (2014) Methanol-induced conformation transition of gland fibroin monitored by FTIR spectroscopy and terahertz spectroscopy. Analyst 139(8):1967–1972

    CAS  Google Scholar 

  11. Gopal V, Guruprasad K (2010) Structure prediction and validation of an affibody engineered for cell-specific nucleic acid targeting. Syst Synth Biol 4(4):293–297

    Google Scholar 

  12. Bains G, Patel AB, Narayanaswami V (2011) Pyrene: a probe to study protein conformation and conformational changes. Molecules 16(9):7909–7935

    CAS  Google Scholar 

  13. Zheng W, Tekpinar M (2011) Accurate flexible fitting of high-resolution protein structures to small-angle X-Ray scattering data using a coarse-grained model with implicit hydration shell. Biophys J 101(12):2981–2991

    CAS  Google Scholar 

  14. Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ (2005) Ca2 + -regulated structural changes in troponin. Proc Natl Acad Sci U S A 102(14):5038–5043

    CAS  Google Scholar 

  15. Shaw GS, Golden LF, Hodges RS, Sykes BD (1991) Interactions between paired calcium-binding sites in proteins: NMR determination of the stoichiometry of calcium binding to a synthetic troponin-C peptide. J Am Chem Soc 113(15):5557–5563

    CAS  Google Scholar 

  16. Chen G (ed) (2013) Characterization of protein therapeutics using mass spectrometry. Springer, New York

    Google Scholar 

  17. Zhang H, Cui W, Gross ML (2013) Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase. Int J Mass Spectrom 354–355:288–291

    Google Scholar 

  18. Borysik AJ, Hewitt DJ, Robinson CV (2013) Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J Am Chem Soc 135(16):6078–6083

    CAS  Google Scholar 

  19. Gross ML, Chen G, Pramanik B (eds) (2012) Protein and peptide mass spectrometry in drug discovery. Wiley, Hoboken

    Google Scholar 

  20. Alborghetti MR, Furlan AS, da Silva JC, Sforça ML, Honorato RV, Granato DC, dos Santos Migueleti DL, Neves JL, de Oliveira PSL, Paes-Leme AF, Zeri ACM, de Torriani ICL, Kobarg J (2013) Structural Analysis of Intermolecular Interactions in the Kinesin Adaptor Complex Fasciculation and Elongation Protein Zeta 1/ Short Coiled-Coil Protein (FEZ1/SCOCO). PLoS One 8(10):e76602

    CAS  Google Scholar 

  21. Liu H, Huang RYC, Chen J, Gross ML, Pakrasi HB (2011) Psb27, a transiently associated protein, binds to the chlorophyll binding protein CP43 in photosystem II assembly intermediates. Proc Natl Acad Sci 108(45):18536–18541

    CAS  Google Scholar 

  22. Hambly DM, Gross ML (2005) Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J Am Soc Mass Spectrom 16(12):2057–2063

    CAS  Google Scholar 

  23. Jones LM, Sperry JB, Carroll JA, Gross ML (2011) Fast photochemical oxidation of proteins for epitope mapping. Anal Chem 83(20):7657–7661

    CAS  Google Scholar 

  24. Pandit D, Tuske SJ, Coales SJ, SY E, Liu A, Lee JE, Morrow JA, Nemeth JF, Hamuro Y (2012) Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 25(3):114–124

    CAS  Google Scholar 

  25. Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, Iacob RE, Engen JR (2014) Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 19(1):95–102

    CAS  Google Scholar 

  26. Zhang Q, Noble K, Mao Y, Young N, Sathe S, Roux K, Marshall A (2013) Rapid Screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. J Am Soc Mass Spectrom 24(7):1016–1025

    CAS  Google Scholar 

  27. Sevy AM, Healey JF, Deng W, Spiegel PC, Meeks SL, Li R (2013) Epitope mapping of inhibitory antibodies targeting the C2 domain of coagulation factor VIII by hydrogen-deuterium exchange mass spectrometry. J Thromb Haemost 11(12):2128–2136

    CAS  Google Scholar 

  28. Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, Blakney GT, Zhang H-M, Marshall AG (2011) Epitope Mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 83(18):7129–7136

    CAS  Google Scholar 

  29. Lu J, Witcher DR, White MA, Wang X, Huang L, Rathnachalam R, Beals JM, Kuhstoss S (2005) IL-1β epitope mapping using site-directed mutagenesis and hydrogen − deuterium exchange mass spectrometry analysis. Biochemistry 44(33):11106–11114

    CAS  Google Scholar 

  30. Malito E, Faleri A, Lo Surdo P, Veggi D, Maruggi G, Grassi E, Cartocci E, Bertoldi I, Genovese A, Santini L, Romagnoli G, Borgogni E, Brier S, Lo Passo C, Domina M, Castellino F, Felici F, van der Veen S, Johnson S, Lea SM, Tang CM, Pizza M, Savino S, Norais N, Rappuoli R, Bottomley MJ, Masignani V (2013) Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen. Proc Natl Acad Sci 110(9):3304–3309

    CAS  Google Scholar 

  31. Wedin RE, Delepierre M, Dobson CM, Poulsen FM (1982) Mechanisms of hydrogen exchange in proteins from NMR studies of individual tryptophan indole amine hydrogens in lysozyme. Biochemistry 21(5):1098–1103

    CAS  Google Scholar 

  32. Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins Struct Funct Bioinforma 17(1):75–86

    CAS  Google Scholar 

  33. Chalmers MJ, Busby SA, Pascal BD, West GM, Griffin PR (2011) Differential hydrogen/deuterium exchange mass spectrometry analysis of protein–ligand interactions. Expert Rev Proteomics 8(1):43–59

    CAS  Google Scholar 

  34. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2(4):522–531

    CAS  Google Scholar 

  35. Skinner JJ, Lim WK, Bédard S, Black BE, Englander SW (2012) Protein dynamics viewed by hydrogen exchange. Protein Sci 21(7):996–1005

    CAS  Google Scholar 

  36. Konermann L, Vahidi S, Sowole MA (2013) Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal Chem 86(1):213–232

    Google Scholar 

  37. Ferraro DM, Lazo ND, Robertson AD (2003) EX1 hydrogen exchange and protein folding†. Biochemistry 43(3):587–594

    Google Scholar 

  38. Chetty PS, Mayne L, Lund-Katz S, Stranz D, Englander SW, Phillips MC (2009) Helical structure and stability in human apolipoprotein A-I by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci 106(45):19005–19010

    CAS  Google Scholar 

  39. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25(1):158–170

    CAS  Google Scholar 

  40. Hamuro Y, Coales SJ, Molnar KS, Tuske SJ, Morrow JA (2008) Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun Mass Spectrom 22(7):1041–1046

    CAS  Google Scholar 

  41. Rand KD, Zehl M, Jensen ON, Jorgensen TJD (2009) Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem 81(14):5577–5584

    CAS  Google Scholar 

  42. Mayne L, Kan Z-Y, Sevugan Chetty P, Ricciuti A, Walters B, Englander S (2011) Many overlapping peptides for protein hydrogen exchange experiments by the fragment separation-mass spectrometry method. J Am Soc Mass Spectrom 22(11):1898–1905

    CAS  Google Scholar 

  43. Kan Z-Y, Walters BT, Mayne L, Englander SW (2013) Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc Natl Acad Sci 110(41):16438–16443

    CAS  Google Scholar 

  44. Hu W, Walters BT, Kan Z-Y, Mayne L, Rosen LE, Marqusee S, Englander SW (2013) Stepwise protein folding at near amino acid resolution by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci 110(19):7684–7689

    CAS  Google Scholar 

  45. Sheff J, Rey M, Schriemer D (2013) Peptide–column interactions and their influence on back exchange rates in hydrogen/deuterium exchange-MS. J Am Soc Mass Spectrom 24(7):1006–1015

    CAS  Google Scholar 

  46. Zehl M, Rand KD, Jensen ON, Jorgensen TJD (2008) Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J Am Chem Soc 130(51):17453–17459

    CAS  Google Scholar 

  47. Rand KD, Adams CM, Zubarev RA, Jorgensen TJD (2008) Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J Am Chem Soc 130(4):1341–1349

    CAS  Google Scholar 

  48. Jorgensen TJD, Gardsvoll H, Ploug M, Roepstorff P (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J Am Chem Soc 127(8):2785–2793

    CAS  Google Scholar 

  49. Demmers JAA, Rijkers DTS, Haverkamp J, Killian JA, Heck AJR (2002) Factors affecting gas-phase deuterium scrambling in peptide ions and their implications for protein structure determination. J Am Chem Soc 124(37):11191–11198

    CAS  Google Scholar 

  50. Hoerner JK, Xiao H, Dobo A, Kaltashov IA (2004) Is there hydrogen scrambling in the gas phase? energetic and structural determinants of proton mobility within protein ions. J Am Chem Soc 126(24):7709–7717

    CAS  Google Scholar 

  51. Ferguson PL, Pan J, Wilson DJ, Dempsey B, Lajoie G, Shilton B, Konermann L (2006) Hydrogen/deuterium scrambling during quadrupole time-of-flight MS/MS analysis of a zinc-binding protein domain. Anal Chem 79(1):153–160

    Google Scholar 

  52. Jorgensen TJD, Bache N, Roepstorff P, Gardsvoll H, Ploug M (2005) Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides. Mol Cell Proteomics 4(12):1910–1919

    Google Scholar 

  53. Rand KD, Jorgensen TJD (2007) Development of a peptide probe for the occurrence of hydrogen (1H/2H) scrambling upon gas-phase fragmentation. Anal Chem 79(22):8686–8693

    CAS  Google Scholar 

  54. Sterling HJ, Williams ER (2010) Real-time hydrogen/deuterium exchange kinetics via supercharged electrospray ionization tandem mass spectrometry. Anal Chem 82(21):9050–9057

    CAS  Google Scholar 

  55. Kaltashov IA, Bobst CE, Abzalimov RR (2009) H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top-down approach? Anal Chem 81(19):7892–7899

    CAS  Google Scholar 

  56. Pan J, Han J, Borchers CH, Konermann L (2009) Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein. J Am Chem Soc 131(35):12801–12808

    CAS  Google Scholar 

  57. Pan J, Han J, Borchers CH, Konermann L (2010) Characterizing short-lived protein folding intermediates by top-down hydrogen exchange mass spectrometry. Anal Chem 82(20):8591–8597

    CAS  Google Scholar 

  58. Pan J, Han J, Borchers CH, Konermann L (2011) Conformer-specific hydrogen exchange analysis of Ab(1-42) oligomers by top-down electron capture dissociation mass spectrometry. Anal Chem 83(13):5386–5393

    CAS  Google Scholar 

  59. Landgraf R, Chalmers M, Griffin P (2012) Automated hydrogen/deuterium exchange electron transfer dissociation high resolution mass spectrometry measured at single-amide resolution. J Am Soc Mass Spectrom 23(2):301–309

    CAS  Google Scholar 

  60. Huang RYC, Garai K, Frieden C, Gross ML (2011) Hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry determine the interface and dynamics of apolipoprotein E oligomerization. Biochemistry 50(43):9273–9282

    CAS  Google Scholar 

  61. Pascal B, Willis S, Lauer J, Landgraf R, West G, Marciano D, Novick S, Goswami D, Chalmers M, Griffin P (2012) HDX workbench: software for the analysis of H/D exchange MS data. J Am Soc Mass Spectrom 23(9):1512–1521

    CAS  Google Scholar 

  62. Weis D, Engen J, Kass I (2006) Semi-automated data processing of hydrogen exchange mass spectra using HX-express. J Am Soc Mass Spectrom 17(12):1700–1703

    CAS  Google Scholar 

  63. Guttman M, Weis D, Engen J, Lee K (2013) Analysis of overlapped and noisy hydrogen/deuterium exchange mass spectra. J Am Soc Mass Spectrom 24(12):1906–1912

    CAS  Google Scholar 

  64. Wei H, Ahn J, Yu Y, Tymiak A, Engen J, Chen G (2012) Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation. J Am Soc Mass Spectrom 23(3):498–504

    CAS  Google Scholar 

  65. Zhang J, Ramachandran P, Kumar R, Gross M (2013) H/D exchange centroid monitoring is insufficient to show differences in the behavior of protein states. J Am Soc Mass Spectrom 24(3):450–453

    CAS  Google Scholar 

  66. Walters B, Ricciuti A, Mayne L, Englander SW (2012) Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment. J Am Soc Mass Spectrom 23(12):2132–2139

    CAS  Google Scholar 

  67. Venable JD, Okach L, Agarwalla S, Brock A (2012) Subzero temperature chromatography for reduced back-exchange and improved dynamic range in amide hydrogen/deuterium exchange mass spectrometry. Anal Chem 84(21):9601–9608

    CAS  Google Scholar 

  68. Valeja S, Emmett M, Marshall A (2012) Polar aprotic modifiers for chromatographic separation and back-exchange reduction for protein hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 23(4):699–707

    CAS  Google Scholar 

  69. Zhang X, Chien EYT, Chalmers MJ, Pascal BD, Gatchalian J, Stevens RC, Griffin PR (2010) Dynamics of the β2-Adrenergic G-protein coupled receptor revealed by hydrogen − deuterium exchange. Anal Chem 82(3):1100–1108

    CAS  Google Scholar 

  70. Mysling S, Salbo R, Ploug M, Jørgensen TJD (2013) Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry. Anal Chem 86(1):340–345

    Google Scholar 

  71. Bobst CE, Kaltashov IA (2014) Enhancing the quality of H/D exchange measurements with mass spectrometry detection in disulfide-rich proteins using electron capture dissociation. Anal Chem 86(11):5225--5231

  72. Guttman M, Scian M, Lee KK (2011) Tracking hydrogen/deuterium exchange at Glycan sites in glycoproteins by mass spectrometry. Anal Chem 83(19):7492–7499

    CAS  Google Scholar 

  73. Huang RYC, Hudgens JW (2013) Effects of desialylation on human α1-Acid Glycoprotein–ligand interactions. Biochemistry 52(40):7127–7136

    CAS  Google Scholar 

  74. Wales TE, Fadgen KE, Gerhardt GC, Engen JR (2008) High-speed and high-resolution UPLC separation at zero degrees celsius. Anal Chem 80(17):6815–6820

    CAS  Google Scholar 

  75. Ahn J, Jung MC, Wyndham K, Yu YQ, Engen JR (2012) Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10 000 psi. Anal Chem 84(16):7256–7262

    CAS  Google Scholar 

  76. Iacob RE, Murphy JP, Engen JR (2008) Ion mobility adds an additional dimension to mass spectrometric analysis of solution-phase hydrogen/deuterium exchange. Rapid Commun Mass Spectrom 22(18):2898–2904

    CAS  Google Scholar 

  77. Zhang Z, Zhang A, Xiao G (2012) Improved protein hydrogen/deuterium exchange mass spectrometry platform with fully automated data processing. Anal Chem 84(11):4942–4949

    CAS  Google Scholar 

  78. Fang J, Rand KD, Beuning PJ, Engen JR (2011) False EX1 signatures caused by sample carryover during HX MS analyses. Int J Mass Spectrom 302(1–3):19–25

    CAS  Google Scholar 

  79. Majumdar R, Manikwar P, Hickey J, Arora J, Middaugh CR, Volkin D, Weis D (2012) Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J Am Soc Mass Spectrom 23(12):2140–2148

    CAS  Google Scholar 

  80. Barlow DJ, Edwards MS, Thornton JM (1986) Continuous and discontinuous protein antigenic determinants. Nature 322(6081):747–748

    CAS  Google Scholar 

  81. Schramm G, Bufe A, Petersen A, Haas H, Merget R, Schlaak M, Becker WM (2001) Discontinuous IgE-binding epitopes contain multiple continuous epitope regions: results of an epitope mapping on recombinant Hol l 5, a major allergen from velvet grass pollen. Clin Exp Allergy 31(2):331–341

    CAS  Google Scholar 

  82. Cho YK, Chen I, Wei X, Li L, Shusta EV (2009) A yeast display immunoprecipitation method for efficient isolation and characterization of antigens. J Immunol Methods 341(1–2):117–126

    CAS  Google Scholar 

  83. Kashiwase H, Ishimura M, Ishikawa Y, Nishigaki T (1997) Characterization of one monoclonal antibody against feline immunodeficiency virus p24 and its application to antigen capture ELISA. J Virol Methods 68(2):183–192

    CAS  Google Scholar 

  84. Kang M, Kim SY, An SSA, Ju YR (2013) Characterizing affinity epitopes between prion protein and [beta]-amyloid using an epitope mapping immunoassay. Exp Mol Med 45:e34

    Google Scholar 

  85. Fägerstam LG, Frostell Å, Karlsson R, Kullman M, Larsson A, Malmqvist M, Butt H (1990) Detection of antigen—antibody interactions by surface plasmon resonance. Appl Epitope Mapping J Mol Recog 3(5–6):208–214

    Google Scholar 

  86. Jin L, Fendly BM, Wells JA (1992) High resolution functional analysis of antibody-antigen interactions. J Mol Biol 226(3):851–865

    CAS  Google Scholar 

  87. Suckau D, Köhl J, Karwath G, Schneider K, Casaretto M, Bitter-Suermann D, Przybylski M (1990) Molecular epitope identification by limited proteolysis of an immobilized antigen-antibody complex and mass spectrometric peptide mapping. Proc Natl Acad Sci 87(24):9848–9852

    CAS  Google Scholar 

  88. Engen JR (2003) Analysis of protein complexes with hydrogen exchange and mass spectrometry. Analyst 128(6):623–628

    CAS  Google Scholar 

  89. Madico G, Welsch JA, Lewis LA, McNaughton A, Perlman DH, Costello CE, Ngampasutadol J, Vogel U, Granoff DM, Ram S (2006) The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J Immunol 177(1):501–510

    CAS  Google Scholar 

  90. Coales SJ, Tuske SJ, Tomasso JC, Hamuro Y (2009) Epitope mapping by amide hydrogen/deuterium exchange coupled with immobilization of antibody, on-line proteolysis, liquid chromatography and mass spectrometry. Rapid Commun Mass Spectrom 23(5):639–647

    CAS  Google Scholar 

  91. Jensen PF, Jørgensen TJD, Koefoed K, Nygaard F, Sen JW (2013) Affinity capture of biotinylated proteins at acidic conditions to facilitate hydrogen/deuterium exchange mass spectrometry analysis of multimeric protein complexes. Anal Chem 85(15):7052–7059

    CAS  Google Scholar 

  92. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo G-R, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463(7280):501–506

    CAS  Google Scholar 

  93. Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MFBG (2007) A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 282(4):2229–2236

    CAS  Google Scholar 

  94. Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D (2011) Aggregation, stability, and formulation of human antibody therapeutics. In: Rossen D (ed) Advances in Protein Chemistry and Structural Biology, vol Volume 84. Academic Press, pp 41–61

  95. Tang L, Sundaram S, Zhang J, Carlson P, Matathia A, Parekh B, Zhou Q, Hsieh M-C (2013) Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry. mAbs 5(1):114–125

    Google Scholar 

  96. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar DB, Nijem I, Allison DE, Wong PY, Kao Y-H, Quan C, Joshi A, Harris RJ, Motchnik P (2010) Charge variants in IgG1: Isolation, characterization, in vitro binding properties and pharmacokinetics in rats. mAbs 2(6):613–624

    Google Scholar 

  97. Hopper ED, Pittman AMC, Tucker CL, Campa MJ, Patz EF, Fitzgerald MC (2009) Hydrogen/deuterium exchange- and protease digestion-based screening assay for protein − ligand binding detection. Anal Chem 81(16):6860–6867

    CAS  Google Scholar 

  98. Zhang A, Hu P, MacGregor PA, Xue Y, Fan H, Suchecki P, Olszewski LT, Liu A (2014) Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variations using HDX-MS and structural modeling. Anal Chem 86(7):3468–3475

    CAS  Google Scholar 

  99. Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R (2011) Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 48(6–7):860–866

    CAS  Google Scholar 

  100. Mahler H-C, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–2934

    CAS  Google Scholar 

  101. Roberts CJ, Das TK, Sahin E (2011) Predicting solution aggregation rates for therapeutic proteins: approaches and challenges. Int J Pharm 418(2):318–333

    CAS  Google Scholar 

  102. Zhang A, Singh S, Shirts M, Kumar S, Fernandez E (2012) Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res 29(1):236–250

    Google Scholar 

  103. Iacob RE, Bou-Assaf GM, Makowski L, Engen JR, Berkowitz SA, Houde D (2013) Investigating monoclonal antibody aggregation using a combination of H/DX-MS and other biophysical measurements. J Pharm Sci 102(12):4315–4329

    CAS  Google Scholar 

  104. Hitosugi T, Chen J (2013) Post-translational modifications and the Warburg effect. Oncogene ■:1–7

  105. Muthana SM, Campbell CT, Gildersleeve JC (2011) Modifications of Glycans: biological significance and therapeutic opportunities. ACS Chem Biol 7(1):31–43

    Google Scholar 

  106. Wong C-H (2005) Protein glycosylation: new challenges and opportunities. J Org Chem 70(11):4219–4225

    CAS  Google Scholar 

  107. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotech 24(10):1241–1252

    CAS  Google Scholar 

  108. Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9(8):1716–1728

    CAS  Google Scholar 

  109. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55(2):217–250

    CAS  Google Scholar 

  110. Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54(4):531–545

    CAS  Google Scholar 

  111. Piedmonte DM, Treuheit MJ (2008) Formulation of Neulasta® (pegfilgrastim). Adv Drug Deliv Rev 60(1):50–58

    CAS  Google Scholar 

  112. Alley SC, Zhang X, Okeley NM, Anderson M, Law C-L, Senter PD, Benjamin DR (2009) The pharmacologic basis for antibody-auristatin conjugate activity. J Pharmacol Exp Ther 330(3):932–938

    CAS  Google Scholar 

  113. Ikeda H, Hideshima T, Fulciniti M, Lutz RJ, Yasui H, Okawa Y, Kiziltepe T, Vallet S, Pozzi S, Santo L, Perrone G, Tai Y-T, Cirstea D, Raje NS, Uherek C, Dälken B, Aigner S, Osterroth F, Munshi N, Richardson P, Anderson KC (2009) The monoclonal antibody nBT062 conjugated to cytotoxic maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res 15(12):4028–4037

    CAS  Google Scholar 

  114. Panowksi S, Bhakta S, Raab H, Polakis P, Junutula JR (2014) Site-specific antibody drug conjugates for cancer therapy. mAbs 6(1):34–45

    Google Scholar 

  115. Pan LY, Salas-Solano O, Valliere-Douglass JF (2014) Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal Chem 86(5):2657–2664

    CAS  Google Scholar 

  116. Garidel P, Blume A, Wagner M (2014) Prediction of colloidal stability of high concentration protein formulations. Pharmaceutical Development and Technology:1–8

  117. Majumdar R, Manikwar P, Hickey JM, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Volkin DB, Weis DD (2013) Effects of salts from the hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody. Biochemistry 52(19):3376–3389

    CAS  Google Scholar 

  118. Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100(6):2071–2086

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Adrienne Tymiak, Dr Bruce Car, Dr Morrey Atkinson, and Dr Peter Moesta from Bristol-Myers Squibb for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Chen.

Additional information

Published in the topical collection Analysis of Biological Therapeutic Agents and Biosimilars with guest editor Karen Phinney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R.YC., Chen, G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem 406, 6541–6558 (2014). https://doi.org/10.1007/s00216-014-7924-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7924-3

Keywords

Navigation