Skip to main content

Abstract

Environmental stresses considerably limit plant growth, distribution, and productivity. Biological systems generate a range of different reactive oxygen species (ROS) like superoxide (O2 •−), hydroxyl radical (OH), and hydrogen peroxide (H2O2), during the course of normal metabolic reactions. If it is not effectively and rapidly removed, ROS damages a wide range of macromolecules, ultimately leading to cell death. ROS are also generated in response to various biotic and abiotic stresses. Cells have evolved both enzymatic and nonenzymatic defense mechanisms to protect cells from lethal effects of free radicals. ROS-scavenging enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) that play a crucial role in regulating ROS accumulation in cells. Transgenic plants expressing specific gene candidates have been proven to increase the tolerance to environmental stresses significantly. In recent years, several efforts have been made to improve the oxidative stress tolerance in plants by over-expressing plant or bacterial genes coding either for ROS-scavenging enzymes or for enzymes modulating the cellular antioxidant capacity. In this chapter, we have discussed some of the significant reports on transgenic plants with altered antioxidant capacity mainly focusing on the new insight into the antioxidant defense mechanisms. Finally, future focus of transgenic research to combat oxidative stress has been briefed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med 23:473–479

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–136

    CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1991) Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol 32:691–698

    CAS  Google Scholar 

  • Aono M, Saji H, Fujiyama K, Sugita M (1995) Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol 107:645–648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arisi ACM, Cornic G, Jouanin L, Foyer CH (1998) Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiol 117:565–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase – a hydrogen peroxide-scavenging enzyme in plants. Physiol Planta 85:235–241

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Avsian-Kretchmer O, Gueta-Dahan Y, Lev-Yadun S, Gollop R, Ben-Hayyim G (2004) The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol 135:1685–1696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Begcy K, Mariano ED, Mattiello L, Nunes AV, Mazzafera P, Maia IG, Menossi M (2011) An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One 6:e23776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowler C, Montagu MV, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Broadbent P, Creissen GP, Kular B, Wellburn AR, Mullineaux P (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8:247–255

    Article  CAS  Google Scholar 

  • Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase – a prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen KM, Holmström M, Raksajit W, Suorsa M, Piippo M, Aro EM (2010) Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biol 43:1471–2229

    Google Scholar 

  • Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman MB (2004) Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol 135:1630–1641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Creissen G, Reynolds H, Xue Y, Mullineaux P (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8:167–175

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985

    Article  CAS  PubMed  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    Google Scholar 

  • Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005a) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005b) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signalling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shiqeoka S (2012) The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant Cell Physiol 53:1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:8–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Guan Q, Takano T, Liu S (2012) Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa. PLoS One 7:e41233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan Q, Wang Z, Wang X, Takano T, Liu S (2015) A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J Plant Physiol 175:183–191

    Article  CAS  PubMed  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, de Labrouhe DT, Drevet JR, Roeckel-Drevet P (2011) Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Menn AL, Rousselle P, Ameglio T, Faltin Z, Branlard G, Eshdat Y, Julien JL, Drevet JR, Roekel-Drevet P (2005) Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase. Biochim Biophys Acta 1724:108–118

    Article  CAS  PubMed  Google Scholar 

  • Holland D, Ben-Hayyim G, Faltin Z, Camoin L, Strosberg AD, Eshdat Y (1993) Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol Biol 21:923–927

    Article  CAS  PubMed  Google Scholar 

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211

    Article  CAS  Google Scholar 

  • Jing X, Hou P, Lu Y, Deng S, Li N, Zhao R, Sun J, Wang Y, Han Y, Lang T, Ding M, Shen X, Chen S (2015) Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front Plant Sci 6:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Karpinska B, Karlsson M, Schinkel H, Streller S, Suss KH, Melzer M, Wingsle G (2001) A novel superoxide dismutase with a high isoelectric point in higher plants: expression, regulation and protein localisation. Plant Physiol 126:1668–1677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HJ, Barbara T (2008) Involvement of extracellular Cu/Zn superoxide dismutase in cotton fiber primary and secondary cell wall biosynthesis. Plant Signal Behav 3:1119–1121

    Article  PubMed Central  PubMed  Google Scholar 

  • Kong F, Deng Y, Zhou B, Wang G, Wang Y, Meng Q (2014) A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II underchilling stress. J Exp Bot 65:143–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar SR, Sivalingam A, Selvaraj D, Ahmed Z, Ramalingam S (2012) Isolation and characterization of cold inducible genes in carrot by suppression subtractive hybridization. Biol Plant 57:97–104

    Article  Google Scholar 

  • Kuzniak E (2002) Transgenic plants: an insight into oxidative stress tolerance mechanisms. Acta Physiol Planta 24:97–113

    Article  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Liu HC, Tian DQ, Liu JX, Ma GY, Zou QC, Zhu ZJ (2013) Cloning and functional analysis of a novel ascorbate peroxidase (APX) gene from Anthurium andraeanum. J Zhejiang Univ Sci B 14:1110–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Bao H, Cai J, Han J, Zhou L (2014) A novel thylakoid ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic tobacco. Int J Mol Sci 15:171–185

    Article  PubMed Central  Google Scholar 

  • Lu ZQ, Liu D, Liu SK (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 6:8271–8276

    Article  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  • McKersie BD, Chen Y, De Beus M, Bowley SR, Bowler C (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mylona PV, Polidoros AN (2010) ROS regulation of antioxidant genes. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, New York

    Google Scholar 

  • Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31:399–406

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97:1265–1267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Payton P, Allen RD, Holaday AS (1996) Expression of Arabidopsis glutathione reductase in tobacco. Plant Physiol (Suppl 111):120 abstract

    Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet 85:568–576

    Article  CAS  PubMed  Google Scholar 

  • Piippo M, Allahverdiyeva Y, Paakkarinen V, Suoranta UM, Battchikova N, Aro EM (2006) Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress. Physiol Genom 25:142–152

    Article  CAS  Google Scholar 

  • Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (1991) Overproduction of petunia copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol 97:452–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pitcher LH, Repetti P, Zilinskas BA (1994) Overproduction of ascorbate peroxidase protects transgenic tobacco plants against oxidative stress. Plant Physiol Suppl 105:116

    Google Scholar 

  • Polidoros AN, Mylona PV, Scandalios JG (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant pathogen interactions and resistance to oxidative stress. Transgen Res 10:555–569

    Article  CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgen Res 17:281–291

    Article  CAS  Google Scholar 

  • Rajan VB, D’Silva P (2009) Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genom 9:433–446

    Article  CAS  Google Scholar 

  • Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta 1819:186–194

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Polle A (1994) Protection from oxidative stress in transgenic plants. Biochem Soc Trans 22:936–940

    Article  CAS  PubMed  Google Scholar 

  • Robinson M, Bunce JA (2000) Influence of drought-induced water stress on soybean and spinach leaf ascorbate-dehydroascorbate level and redox status. Int J Plant Sci 161:271–279

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MM, Maurer A, Rodriguez HA, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    Article  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 1:55–63

    Article  Google Scholar 

  • Saruyama H, Tanida M (1995) Effect of chilling on activated oxygen‐scavenging enzymes in low temperature‐sensitive and tolerant cultivars of rice (Oryza sativa L.). Plant Sci 109:105–113

    Article  CAS  Google Scholar 

  • Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sen Gupta A, Heinen J, Holaday AS, Burke JJ, Allen RD (1993a) Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD (1993b) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067–1073

    CAS  Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9:e110302

    Article  PubMed Central  PubMed  Google Scholar 

  • Shiraya T, Mori T, Maruyama T, Sasaki M, Takamatsu T, Oikawa K, Itoh K, Kaneko K, Ichikawa H, Mitsui T (2014) Golgi/plastid-type manganese superoxide dismutase involved in heat stress tolerance during grain filling in rice. Plant Biotechnol J 1–13

    Google Scholar 

  • Shu DF, Wang LY, Duan M, Deng YS, Meng QW (2011) Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol Biochem 49:1228–1237

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Mishra A, Jha B (2014a) Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16:321–332

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Mishra A, Jha B (2014b) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547:119–125

    Article  CAS  PubMed  Google Scholar 

  • Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S (2006) Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81:349–354

    Article  CAS  PubMed  Google Scholar 

  • Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Planta 116:317–327

    Article  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  CAS  PubMed  Google Scholar 

  • Umbach AL, Fiorani F, Siedow JN (2005) Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol 139:1806–1820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohé L (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–53

    Article  CAS  PubMed  Google Scholar 

  • Van Assche CJ, Davies HM, O’Neal JK (1989) Superoxide dismutase expression in plants. European Patent Application. Publication number EP 0356061A2

    Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inzé D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montague M, Inze D (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. BioTechnology 12:165–168

    Article  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  PubMed  Google Scholar 

  • Webb RP, Allen RD (1995) Overexpression of pea cytosolic ascorbate peroxidase in Nicotiana tabacum confers protection against the effects of paraquat. Plant Physiol 108(Suppl):64

    Google Scholar 

  • Webb RP, Allen RD (1996) Overexpression of pea cytosolic ascorbate peroxidase confers protection against oxidative stress in transgenic Nicotiana tabacum. Plant Physiol 111(Suppl):48

    Google Scholar 

  • Wei A, He C, Li B, Li N, Zhang J (2011) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J 9:216–229

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wang G, Ji J, Gao H, Guan W, Wu J, Guan C, Wang Y (2014) Cloning of a cytosolic ascorbate peroxidase gene from Lycium chinense Mill. and enhanced salt tolerance by overexpressing in tobacco. Gene 543:85–92

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161:1517–1528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi K, Mori H, Nishimura M (1995) A novel isozyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162

    CAS  PubMed  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  CAS  PubMed  Google Scholar 

  • Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu ZS, Ma YZ (2013) Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS One 8:e73989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One 8:e57472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R (2012) Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol 159:1396–1407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathishkumar Ramalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rajeevkumar, S., Jagadeesan, H., Ramalingam, S. (2015). Transgenic Plants and Antioxidative Defense: Present and Future?. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_15

Download citation

Publish with us

Policies and ethics