Skip to main content

Abstract

Hemodynamic monitoring and tissue oxygenation assessment are regarded as essential tools for the management of the critically ill patient and require a physician who is properly trained to employ the techniques and interpret the data accurately. The information obtained from bedside monitoring should be interpreted in the context of other relevant investigations and clinical findings. Therefore, integrating hemodynamic variables with the clinical presentation increases the accuracy of assessment. These techniques are only useful when they have the capacity to provide additional information, the information is interpreted correctly, the interpretation of this additional information results in a change of therapy, and this change in therapy alters outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettilä V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–71.

    Article  PubMed  Google Scholar 

  2. LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.

    Article  CAS  PubMed  Google Scholar 

  3. Dubin A, Pozo MO, Casabella CA, Pálizas Jr F, Murias G, Moseinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.

    Article  CAS  PubMed  Google Scholar 

  5. Hollemberg SM. Hemodynamic monitoring. Chest. 2013;143:1480–8.

    Article  Google Scholar 

  6. Magder S. How to use central venous pressure measurements. Curr Opin Crit Care. 2005;11:264–70.

    Article  PubMed  Google Scholar 

  7. Magder S. Central venous pressure: a useful but not so simple measurement. Crit Care Med. 2006;34:2224–7.

    Article  PubMed  Google Scholar 

  8. Magder S, Bafaqeeh F. The clinical role of central venous pressure measurements. J Intensive Care Med. 2007;22:44–51.

    Article  PubMed  Google Scholar 

  9. Magder S. Bench-to-bedside review: an approach to hemodynamic monitoring—Guyton at the bedside. Crit Care. 2012;16:236.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bose EL, Hravnak M, Pinsky MR. The interface between monitoring and physiology at the bedside. Crit Care Clin. 2015;31:1–24.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Honette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.

    Article  CAS  PubMed  Google Scholar 

  12. Forrester JS, Diamond G, Chatterjee K, Swan HJ. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (first of two parts). N Engl J Med. 1976;295:1356–62.

    Article  CAS  PubMed  Google Scholar 

  13. Forrester JS, Diamond G, Chatterjee K, Swan HJ. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (second of two parts). N Engl J Med. 1976;295:1404–13.

    Article  CAS  PubMed  Google Scholar 

  14. Pinsky MR. Hemodynamic monitoring in the intensive care unit. Clin Chest Med. 2003;4:549–60.

    Article  Google Scholar 

  15. Rhodes A, Pinsky MR. Haemodynamic monitoring using the pulmonary artery catheter. In: Kuhlen R, Moreno R, Ranieri M, Rhodes A, editors. 25 Years of progress and innovation in intensive care medicine. Berlin: Medizinisch Wissenschaftliche Verlagsgesellschaft; 2008. p. 57–62.

    Google Scholar 

  16. O’Quin R, Marini JJ. Pulmonary artery occlusion pressure: clinical physiology, measurement and interpretation. Am Rev Respir Dis. 1983;128:319–26.

    PubMed  Google Scholar 

  17. Calvin JE, Driedger AA, Sibbald WJ. Does the pulmonary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med. 1981;9:437–43.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.

    Article  PubMed  Google Scholar 

  19. Raper R, Sibbald WJ. Misled by the wedge? The Swan Ganz catheter and left ventricular preload. Chest. 1986;89:427–34.

    Article  CAS  PubMed  Google Scholar 

  20. Rizni K, de Boisblanc BP, Truwit JD, et al. Effect of airway pressure display on interobserver agreement in the assessment of vascular pressures in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2005;33:98–103.

    Article  Google Scholar 

  21. Krahmer RL, Fang HK, Vitello J, et al. Pulmonary capillary wedge pressure estimates of left ventricular preload are inaccurate in endotoxin shock: contribution of Starling resistor forces to septic pulmonary hypertension. Shock. 1994;2:344–50.

    Article  CAS  PubMed  Google Scholar 

  22. Morris AH, Chapman RH, Gardner RM. Frequency of wedge pressure errors in the ICU. Crit Care Med. 1985;13:705–8.

    Article  CAS  PubMed  Google Scholar 

  23. Leibowitz AB. More reliable determination of central venous and pulmonary artery occlusion pressures: does it matter? Crit Care Med. 2005;33:243–5.

    Article  PubMed  Google Scholar 

  24. Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–92.

    Article  CAS  PubMed  Google Scholar 

  25. Polanco PM, Pinsky MR. Practical issues of hemodynamic monitoring at the bedside. Surg Clin North Am. 2006;86:1431–56.

    Article  PubMed  Google Scholar 

  26. McGee WT, Mailloux P, Jodka P, Thomas J. The pulmonary artery catheter in critical care. Semin Dial. 2006;19:480–91.

    Article  PubMed  Google Scholar 

  27. Carrico CJ, Horovitz JH. Monitoring the critically ill surgical patient. Adv Surg. 1977;11:101–27.

    CAS  PubMed  Google Scholar 

  28. Bussières JS. Iatrogenic pulmonary artery rupture. Curr Opin Anaesthesiol. 2007;20:48–52.

    Article  PubMed  Google Scholar 

  29. Matthay MA, Chatterjee K. Bedside catheterization of the pulmonary artery: risks compared with benefits. Ann Intern Med. 1988;109:826–34.

    Article  CAS  PubMed  Google Scholar 

  30. Connors Jr AF, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  31. Sandham JD, Hull RD, Brant RF, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.

    Article  PubMed  Google Scholar 

  32. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett E. A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med. 2002;28:256–64.

    Article  PubMed  Google Scholar 

  33. Harvey S, Harrison DA, Singer M. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised trial controlled. Lancet. 2005;366(9484):472–7.

    Article  PubMed  Google Scholar 

  34. Harvey S, Stevens K, Harrison D, et al. An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial. Health Technol Assess. 2006;10:1–133.

    Article  Google Scholar 

  35. Pinsky MR, Vincent JL. Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med. 2005;33(5):1119–22.

    Article  PubMed  Google Scholar 

  36. Shoemaker WC, Wo CC, Chien LC. Evaluation of invasive and noninvasive hemodynamic monitoring in trauma patients. J Trauma. 2006;61(4):844–53.

    Article  PubMed  Google Scholar 

  37. Harvey SE, Welch CA, Harrison DA, Rowan KM, Singer M. Post hoc insights from PAC-Man—the U.K. pulmonary artery catheter trial. Crit Care Med. 2008;36:1714–21.

    Article  PubMed  Google Scholar 

  38. Iberti TJ, Fischer EP, Leibowitz AB, et al. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA. 1990;264:2928–32.

    Article  CAS  PubMed  Google Scholar 

  39. Gnaegi A, Feihl F, Perret C. Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med. 1997;25:213–20.

    Article  CAS  PubMed  Google Scholar 

  40. Hoole SP, Falter F. Evaluation of hypoxemic patients with transesophageal echocardiography. Crit Care Med. 2007;35:S408–13.

    Article  PubMed  Google Scholar 

  41. Poth JM, Beck DR, Bartels K. Ultrasonography for haemodynamic monitoring. Best Pract Res Clin Anaesthesiol. 2014;28:337–51.

    Article  PubMed  Google Scholar 

  42. Subramaniam B, Talmor D. Echocardiography for management of hypotension in the intensive care unit. Crit Care Med. 2007;35:S401–7.

    Article  PubMed  Google Scholar 

  43. Gunst M, Ghaemmaghami V, Sperry J. Accuracy of cardiac function and volume status estimates using the bedside echocardiographic assessment in trauma/critical care. J Trauma. 2008;65:509–16.

    Article  PubMed  Google Scholar 

  44. Vignon P, AitHssain A, Francois B, et al. Echocardiography assessment of pulmonary artery occlusion pressure in ventilated patients: a transesophageal study. Crit Care. 2008;12:R18.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Salem R, Vallee F, Rusca M, Mebazaa A. Hemodynamic monitoring by echocardiography in the ICU: the role of the new echo techniques. Curr Opin Crit Care. 2008;14:561–8.

    Article  PubMed  Google Scholar 

  46. Hofer CK, Ganter MT, Zollinger A. What technique should I use to measure cardiac output? Curr Opin Crit Care. 2007;13:308–17.

    Article  PubMed  Google Scholar 

  47. Morgan P, Al-Subaie N, Rhodes A. Minimally invasive cardiac output monitoring. Curr Opin Crit Care. 2008;14(3):322–6.

    Article  PubMed  Google Scholar 

  48. Monnet X, Teboul JL. Minimally invasive monitoring. Crit Care Clin. 2015;31:25–42.

    Article  PubMed  Google Scholar 

  49. Marx G, Schuerholz T. Minimally invasive cardiac output monitoring. Toy or tool? In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer; 2008. p. 607–18.

    Chapter  Google Scholar 

  50. Jonas MM, Tanser SJ. Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care. 2002;8:257–61.

    Article  PubMed  Google Scholar 

  51. Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med. 2007;33:344–9.

    Article  PubMed  Google Scholar 

  52. Cholley BP, Singer M. Esophageal Doppler: noninvasive cardiac output monitor. Echocardiography. 2003;20:763–9.

    Article  PubMed  Google Scholar 

  53. Monnet X, Teboul JL. Hemodynamic management guided by esophageal Doppler. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer; 2006. p. 153–61.

    Chapter  Google Scholar 

  54. den Uil CA, Klijn E, Lagrand WK, et al. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008;51:161–70.

    Article  Google Scholar 

  55. Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.

    Article  PubMed  Google Scholar 

  57. Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside? Curr Opin Crit Care. 2005;11:240–4.

    Article  PubMed  Google Scholar 

  58. De Backer D, Durand A. Monitoring the microcirculation in critically ill patients. Best Pract Res Clin Anaesthesiol. 2014;28:441–51.

    Article  PubMed  Google Scholar 

  59. Saugel B, Trepte CJ, Heckel K, Wagner JY, Reuter DA. Hemodynamic management of septic shock: is it time for ‘individual goal-directed hemodynamic therapy’ and for specifically targeting the microcirculation? Shock. 2015;43(6):522–9 [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  60. Vallet B, Tavernier B, Lund N. Assessment of tissue oxygenation in the critically-ill. Eur J Anaesthesiol. 2000;17:221–9.

    Article  CAS  PubMed  Google Scholar 

  61. Huang YC. Monitoring oxygen delivery in the critically ill. Chest. 2005;128(5 Suppl 2):554S–60.

    Article  PubMed  Google Scholar 

  62. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7:204–11.

    Article  CAS  PubMed  Google Scholar 

  63. Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–8.

    Article  PubMed  Google Scholar 

  64. Marx G, Reinhart K. Venous oximetry. Curr Opin Crit Care. 2006;12:263–8.

    Article  PubMed  Google Scholar 

  65. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991;99:956–62.

    Article  CAS  PubMed  Google Scholar 

  66. Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med. 1992;20:80–93.

    Article  CAS  PubMed  Google Scholar 

  67. McNelis J, Marini CP, Jurkiewicz A, et al. Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit. Am J Surg. 2001;182:481–5.

    Article  CAS  PubMed  Google Scholar 

  68. Bundgaard H, Kjeldsen K, Suarez Krabbe K, van Hall G, Simonsen L, Qvist J, et al. Endotoxemia stimulates skeletal muscle Na+-K+-ATPase and raises blood lactate under aerobic conditions in humans. Am J Physiol Heart Circ Physiol. 2003;284:H1028–34.

    Article  CAS  PubMed  Google Scholar 

  69. Poeze M. Tissue-oxygenation assessment using near-infrared spectroscopy during severe sepsis: confounding effects of tissue edema on StO2 values. Intensive Care Med. 2006;32:788–9.

    Article  CAS  PubMed  Google Scholar 

  70. Creteur J. Muscle StO2 in critically ill patients. Curr Opin Crit Care. 2008;14(3):361–6.

    Article  PubMed  Google Scholar 

  71. Lipcsey M, Woinarski NC, Bellomo R. Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care. Ann Intensive Care. 2012;2:11.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18:256–60.

    Article  PubMed  Google Scholar 

  73. Hofer CK, Cannesson M. Monitoring fluid responsiveness. Acta Anaesthesiol Taiwan. 2011;49:59–65.

    Article  PubMed  Google Scholar 

  74. Pinsky MR. Functional hemodynamic monitoring. Crit Care Clin. 2015;31:89–111.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guerin L, Monnet X, Teboul JL. Monitoring volume and fluid responsiveness: from static to dynamic indicators. Best Pract Res Clin Anaesthesiol. 2013;27:177–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio E. Nácul MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nácul, F.E., O’Donnell, J.M. (2016). Hemodynamic Monitoring. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics