Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

Nanomaterials have been shown to have physical and chemical properties that have opened new avenues for cancer diagnosis and therapy. Nanoconstructs that enhance existing treatments for cancer, such as radiation therapy, are being explored in several different ways. Two general paths toward nanomaterial-enabled radiosensitization have been explored: (1) improving the effectiveness of ionizing radiation and (2) modulating cellular pathways leading to a disturbance of cellular homeostasis, thus rendering the cells more susceptible to radiation-induced damage. A variety of different agents that work via one of these two approaches have been explored, many of which modulate direct and indirect DNA damage (gold), radiosensitivity through hyperthermia (Fe), and different cellular pathways. There have been many in vitro successes with the use of nanomaterials for radiosensitization, but in vivo testing has been less efficacious, predominantly because of difficulty in targeting the nanoparticles. As improved methods for tumor targeting become available, it is anticipated that nanomaterials can become clinically useful radiosensitizers for radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG, Woodward WA, Krishnan S, Chang JC, Rosen JM (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Trans Med 2:55ra79

    Google Scholar 

  2. Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838

    Article  CAS  PubMed  Google Scholar 

  3. Cui F, Liu Q, Li R, Shen J, Wu P, Yu L, Hu W, Wu F, Jiang C, Yue G et al (2014) Enhancement of radiotherapy efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells. Int J Nanomed 13:2345–2358

    Google Scholar 

  4. Diagaradjane P, Shetty A, Wang JC, Elliott AM, Schwartz J, Shentu S, Park HC, Deorukhkar A, Stafford RJ, Cho SH et al (2008) Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett 8:1492–1500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Le Duc G, Miladi I, Alric C, Mowat P, Bräuer-Krisch E, Bouchet A, Khalil E, Billotey C, Janier M, Lux F et al (2011) Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 5:9566–9574

    Article  PubMed  Google Scholar 

  6. Falaschetti CA, Paunesku T, Kurepa J, Nanavati D, Chou SS, De M, Song M, Jang J-T, Wu A, Dravid VP et al (2013) Negatively charged metal oxide nanoparticles interact with the 20S proteasome and differentially modulate its biologic functional effects. ACS Nano 7:7759–7772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gaca S, Reichert S, Multhoff G, Wacker M, Hehlgans S, Botzler C, Gehrmann M, Rödel C, Kreuter J, Rödel F (2013) Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J Control Release 172:201–206

    Article  CAS  PubMed  Google Scholar 

  8. Gao Y, Chen K, Ma J-L, Gao F (2014) Cerium oxide nanoparticles in cancer. Onco Targets Ther 7:835–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Giustini AJ, Petryk AA, Hoopes PJ (2011) Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors. Proc SPIE 7901:1–11

    Google Scholar 

  10. Griveau A, Bejaud J, Anthiya S, Avril S, Autret D, Garcion E (2013) Silencing of miR-21 by locked nucleic acid-lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death. Int J Pharm 454:765–774

    Article  CAS  PubMed  Google Scholar 

  11. Guidelli EJ, Baffa O (2014) Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Med Phys 41:032101

    Article  PubMed  Google Scholar 

  12. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  CAS  PubMed  Google Scholar 

  13. Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN (2013) Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomed (Lond) 8:1601–1609

    Article  CAS  Google Scholar 

  14. Hall EJ, Giaccia AJ (2011) Radiobiology for the radiologist Lippincott Williams & Wilkins

    Google Scholar 

  15. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56

    Article  PubMed  Google Scholar 

  16. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jain S, Coulter JA, Butterworth KT, Hounsell AR, McMahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ et al (2014) Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions. Radiother Oncol 110:342–347

    Article  CAS  PubMed  Google Scholar 

  18. Jin C, Bai L, Wu H, Liu J, Guo G, Chen J (2008) Paclitaxel-loaded poly(D, L-lactide-co-glycolide) nanoparticles for radiotherapy in hypoxic human tumor cells in vitro. Cancer Biol Ther 7:911–916

    Article  CAS  PubMed  Google Scholar 

  19. Joh DY, Sun L, Stangl M, Al Zaki A, Murty S, Santoiemma PP, Davis JJ, Baumann BC, Alonso-Basanta M, Bhang D et al (2013) Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS ONE 8:e62425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Joh DY, Kao GD, Murty S, Stangl M, Sun L, Zaki AA, Xu X, Hahn SM, Tsourkas A, Dorsey JF (2013) Theranostic gold nanoparticles modified for durable systemic circulation effectively and safely enhance the radiation therapy of human sarcoma cells and tumors. Trans Oncol 6:722–IN32

    Google Scholar 

  21. Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperth 26:790–795

    Article  Google Scholar 

  22. Kampinga HH (2006) Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperth 22:191–196

    Article  CAS  Google Scholar 

  23. Kampinga HH, Dikomey E (2001) Review: Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77:399–408

    Article  CAS  PubMed  Google Scholar 

  24. Kleinauskas A, Rocha S, Sahu S, Sun Y-P, Juzenas P (2013) Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy. Nanotechnology 24:325103

    Article  PubMed  Google Scholar 

  25. Van der Kogel A, Joiner M (2009) Basic clinical radiobiology. A Hodder Arnold Publication, London

    Google Scholar 

  26. Laha D, Pramanik A, Maity J, Mukherjee A, Pramanik P, Laskar A, Karmakar P (2014) Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim Biophys Acta 1840:1–9

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Perkins A, Su Y, Ma Y, Colson L, Horne D, Chen Y (2012) Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation. Proc Natl Acad Sci USA 109:4092–4097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lin M, Huang J, Zhang J, Wang L, Xiao W, Yu H, Li Y, Li H, Yuan C, Hou X et al (2013) The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma. Nanoscale 5:991–1000

    Article  CAS  PubMed  Google Scholar 

  29. Lin M-H, Hsu T-S, Yang P-M, Tsai M-Y, Perng T-P, Lin L-Y (2009) Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer. Int J Radiat Biol 85:214–226

    Article  CAS  PubMed  Google Scholar 

  30. Lu R, Yang D, Cui D, Wang Z, Guo L (2012) Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int J Nanomed 7:2101–2107

    Article  CAS  Google Scholar 

  31. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: A test study. ACS Nano 5:7503–7509

    Article  CAS  PubMed  Google Scholar 

  32. Mackey MA, El-Sayed MA (2014) Chemosensitization of cancer cells via gold nanoparticle-induced cell cycle regulation. Photochem Photobiol 90:306–312

    Article  CAS  PubMed  Google Scholar 

  33. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2010) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  PubMed Central  PubMed  Google Scholar 

  34. Matsudaira H, Ueno AM, Furuno I (1980) Iodine contrast medium sensitizes cultured mammalian cells to X-rays but not to gamma rays. Radiat Res 84:144–148

    Article  CAS  PubMed  Google Scholar 

  35. McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F (2003) The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 22:5755–5773

    Article  CAS  PubMed  Google Scholar 

  36. Miladi I, Duc G Le, Kryza D, Berniard A, Mowat P, Roux S, Taleb J, Bonazza P, Perriat P, Lux F et al (2013) Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors. J Biomater Appl 28:385–394

    Article  CAS  PubMed  Google Scholar 

  37. Miladi I, Aloy M-T, Armandy E, Mowat P, Kryza D, Magné N, Tillement O, Lux F, Billotey C, Janier M et al (2014) Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 11:247–257

    Google Scholar 

  38. Mirjolet C, Papa AL, Créhange G, Raguin O, Seignez C, Paul C, Truc G, Maingon P, Millot N (2013) The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: a proof-of-concept. Radiother Oncol 108:136–142

    Article  CAS  PubMed  Google Scholar 

  39. Misawa M, Takahashi J (2011) Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV Irradiations. Nanomedicine 7:604–614

    Article  CAS  PubMed  Google Scholar 

  40. Monopoli M, Åberg C, Salvati A, Dawson K (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  41. Moyer HR, Delman KA (2008) The role of hyperthermia in optimizing tumor response to regional therapy. Int J Hyperth 24:251–261

    Article  CAS  Google Scholar 

  42. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194

    Article  CAS  PubMed  Google Scholar 

  43. Ngwa W, Korideck H, Kassis AI, Kumar R, Sridhar S, Makrigiorgos GM, Cormack RA (2013) In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds. Nanomedicine 9:25–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ni J, Wu Q, Li Y, Guo Z, Tang G, Sun D, Gao F, Cai J (2007) Cytotoxic and radiosensitizing effects of nano-C60 on tumor cells in vitro. J Nanopart Res 10:643–651

    Article  Google Scholar 

  45. Nikolić N, Vranjes-Ethurić S, Janković D, Ethokić D, Mirković M, Bibić N, Trajković V (2009) Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnology 20:385102

    Article  PubMed  Google Scholar 

  46. Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29

    Article  CAS  PubMed  Google Scholar 

  47. Patra HK, Turner APF (2014) The potential legacy of cancer nanotechnology: cellular selection. Trends Biotechnol 32:21–31

    Article  CAS  PubMed  Google Scholar 

  48. Polf JC, Bronk LF, Driessen WHP, Arap W, Pasqualini R, Gillin M (2011) Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett 98:193702

    Google Scholar 

  49. Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21:85103

    Article  PubMed  Google Scholar 

  50. Porcel E, Li S, Usami N, Remita H, Furusawa Y, Kobayashi K, Sech C Le, Lacombe S (2012) Nano-Sensitization under gamma rays and fast ion radiation. J Phys: Conf Ser 373:012006

    Google Scholar 

  51. Rahman WN, Corde S, Yagi N, Abdul Aziz SA, Annabell N, Geso M (2014) Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int J Nanomed 9:2459–2467

    Article  Google Scholar 

  52. Roa W, Zhang X, Guo L, Shaw A, Hu X, Xiong Y, Gulavita S, Patel S, Sun X, Chen J et al (2009) Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 375101:9 pp

    Google Scholar 

  53. Roots R, Okada S (1975) Estimation of life times and diffusion distances of radicals involved in X-Ray-induced DNA strand breaks or killing of mammalian cells. Radiat Res 64:306–320

    Article  CAS  PubMed  Google Scholar 

  54. Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Stankov K, Borisev I, Kojic V, Rutoljski L, Bogdanovic G, Djordjevic A (2013) Modification of antioxidative and antiapoptotic genes expression in irradiated K562 cells upon fullerenol C60 (OH) 24 nanoparticle treatment. J Nanosci Nanotechnol 13:105–113

    Article  CAS  PubMed  Google Scholar 

  56. Stigliano RV, Shubitidze F, Kekalo K, Baker I, Giustini AJ, Hoopes PJ (2013) Understanding mNP hyperthermia for cancer treatment at the cellular scale. Proc SPIE 8584:85840E

    Article  Google Scholar 

  57. Tishler RB, Schiff PB, Geard CR, Hall EJ (1992) Taxol: a novel radiation sensitizer. Int J Radiat Oncol Biol Phys 22:613–617

    Article  CAS  PubMed  Google Scholar 

  58. Torosean S, Flynn B, Axelsson J, Gunn J, Samkoe KS, Hasan T, Doyley MM, Pogue BW (2013) Nanoparticle uptake in tumors is mediated by the interplay of vascular and collagen density with interstitial pressure. Nanomedicine 9:151–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Townley HE, Rapa E, Wakefield G, Dobson PJ (2012) Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine 8:526–536

    Article  CAS  PubMed  Google Scholar 

  60. Townley HE, Kim J, Dobson PJ (2012) In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale 4:5043–5050

    Article  CAS  PubMed  Google Scholar 

  61. Vinchon-Petit S, Jarnet D, Paillard A, Benoit J-P, Garcion E, Menei P (2010) In vivo evaluation of intracellular drug-nanocarriers infused into intracranial tumours by convection-enhanced delivery: distribution and radiosensitisation efficacy. J Neurooncol 97:195–205

    Article  CAS  PubMed  Google Scholar 

  62. Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, Baker CH (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 9:558–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Werner M, Copp J, Karve S (2011) Folate-targeted polymeric nanoparticle formulation of docetaxel is an effective molecularly targeted radiosensitizer with efficacy dependent on the Timing of Radiotherapy. ACS 5:8990–8998

    Google Scholar 

  64. Wiedenmann N, Valdecanas D, Hunter N, Hyde S, Buchholz TA, Milas L, Mason KA (2007) 130 Nm albumin-bound paclitaxel enhances Tumor radiocurability and therapeutic gain. Clin Cancer Res 13:1868–1874

    Article  CAS  PubMed  Google Scholar 

  65. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497

    Article  CAS  PubMed  Google Scholar 

  66. Xiao F, Zheng Y, Cloutier P, He Y, Hunting D, Sanche L (2011) On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology 22, 465101:10 pp

    Google Scholar 

  67. Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC (2010) Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  68. Yamamori T, Meike S, Nagane M, Yasui H, Inanami O (2013) ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51. FEBS Lett 587:3348–3353

    Article  CAS  PubMed  Google Scholar 

  69. Yasui H, Takeuchi R, Nagane M, Meike S, Nakamura Y, Yamamori T, Ikenaka Y, Kon Y, Murotani H, Oishi M et al (2014) Radiosensitization of tumor cells through endoplasmic reticulum stress induced by PEGylated nanogel containing gold nanoparticles. Cancer Lett 347:151–158

    Article  CAS  PubMed  Google Scholar 

  70. Yoo D, Lee J-H, Shin T-H, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44:863–874

    Article  CAS  PubMed  Google Scholar 

  71. Zhang X, Yang H, Gu K, Chen J, Rui M, Jiang G-L (2011) In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. Int J Nanomed 6:437–444

    Article  Google Scholar 

  72. Zhang X-D, Yang J, Song S-S, Long W, Chen J, Shen X, Wang H, Sun Y-M, Liu P-X, Fan S (2014) Passing through the renal clearance barrier: toward ultrasmall sizes with stable ligands for potential clinical applications. Int J Nanomed 9:2069–2072

    Article  Google Scholar 

  73. Zheng Y, Cloutier P, Hunting DJ, Sanche L (2008) Radiosensitization by gold nanoparticles: comparison of DNA damage induced by low and high-energy electrons. J Biomed Nanotechnol 4:469–473

    Article  CAS  Google Scholar 

  74. Zou J, Qiao X, Ye H, Zhang Y, Xian J, Zhao H, Liu S (2009) Inhibition of ataxia-telangiectasia mutated by antisense oligonucleotide nanoparticles induces radiosensitization of head and neck squamous-cell carcinoma in mice. Cancer Biother Radiopharm 24:339–346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle E. Woloschak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paunesku, T., Gutiontov, S., Brown, K., Woloschak, G.E. (2015). Radiosensitization and Nanoparticles. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics