Skip to main content
Log in

Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Over the past decade, numerous studies have attempted to enhance the effectiveness of radiotherapy (external beam radiotherapy and internal radioisotope therapy) for cancer treatment. However, the low radiation absorption coefficient and radiation resistance of tumors remain major critical challenges for radiotherapy in the clinic. With the development of nanomedicine, nanomaterials in combination with radiotherapy offer the possibility to improve the efficiency of radiotherapy in tumors. Nanomaterials act not only as radiosensitizers to enhance radiation energy, but also as nanocarriers to deliver therapeutic units in combating radiation resistance. In this review, we discuss opportunities for a synergistic cancer therapy by combining radiotherapy based on nanomaterials designed for chemotherapy, photodynamic therapy, photothermal therapy, gas therapy, genetic therapy, and immunotherapy. We highlight how nanomaterials can be utilized to amplify antitumor radiation responses and describe cooperative enhancement interactions among these synergistic therapies. Moreover, the potential challenges and future prospects of radio-based nanomedicine to maximize their synergistic efficiency for cancer treatment are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. Ca-Cancer J. Clin. 2019, 69, 7–34.

    Google Scholar 

  2. Chan, S.; Rowbottom, L.; McDonald, R.; Bjarnason, G. A.; Tsao, M.; Danjoux, C.; Barnes, E.; Popovic, M.; Lam, H.; DeAngelis, C. et al. Does the time of radiotherapy affect treatment outcomes? A review of the literature. Clin. Oncol. 2017, 29, 231–238.

    CAS  Google Scholar 

  3. Schaue, D.; McBride, W. H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015, 12, 527–540.

    Google Scholar 

  4. Corradini, S.; Krug, D.; Meattini, I.; Matuschek, C.; Bölke, E.; Francolini, G.; Baumann, R.; Figlia, V.; Pazos, M.; Tonetto, F. et al. Preoperative radiotherapy: A paradigm shift in the treatment of breast cancer? A review of literature. Crit. Rev. Oncol. Hematol. 2019, 141, 102–111.

    Google Scholar 

  5. Lee, V. H.-F.; Yang, L.; Jiang, Y.; Kong, F.-M. S. Radiation therapy for thoracic malignancies. Hematol. Oncol. Clin. N2020, 34, 109–125}.

    Google Scholar 

  6. Lu, L.; Li, W.; Chen, L.; Su, Q.; Wang, Y.; Guo, Z.; Lu, Y.; Liu, B.; Qin, S. Radiation-induced intestinal damage: Latest molecular and clinical developments. Future Oncol. 2019, 15, 4105–4118.

    CAS  Google Scholar 

  7. Kalogeridi, M.-A.; Zygogianni, A.; Kyrgias, G.; Kouvaris, J.; Chatziioannou, S.; Kelekis, N.; Kouloulias, V. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J. Hepatol. 2015, 7, 101–112.

    Google Scholar 

  8. King, R. B.; McMahon, S. J.; Hyland, W. B.; Jain, S.; Butterworth, K. T.; Prise, K. M.; Hounsell, A. R.; McGarry, C. K. An overview of current practice in external beam radiation oncology with consideration to potential benefits and challenges for nanotechnology. Cancer Nanotechnol. 2017, 8, 3.

    Google Scholar 

  9. Hamoudeh, M.; Kamleh, M. A.; Diab, R.; Fessi, H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Delivery Rev. 2008, 60, 1329–1346.

    CAS  Google Scholar 

  10. Zhang, L.; Chen, H.; Wang, L.; Liu, T.; Yeh, J.; Lu, G.; Yang, L.; Mao, H. Delivery of therapeutic radioisotopes using nanoparticle platforms: Potential benefit in systemic radiation therapy. Nanotechnol. Sci. Appl. 2010, 3, 159–170.

    CAS  Google Scholar 

  11. Lim, K.; Stewart, J.; Kelly, V.; Xie, J.; Brock, K. K.; Moseley, J.; Cho, Y.-B.; Fyles, A.; Lundin, A.; Rehbinder, H. et al. Dosimetrically triggered adaptive intensity modulated radiation therapy for cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 147–154.

    Google Scholar 

  12. Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Goncalves, F. Bone metastases: An overview. Oncol. Rev. 2017, 11, 321.

    Google Scholar 

  13. Wells, S. A., Jr.; Asa, S. L.; Dralle, H.; Elisei, R.; Evans, D. B.; Gagel, R. F.; Lee, N.; Machens, A.; Moley, J. F.; Pacini, F. et al. Revised american thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid2015, 25, 567–610}.

    Google Scholar 

  14. Shirato, H.; Le, Q. T.; Kobashi, K.; Prayongrat, A.; Takao, S.; Shimizu, S.; Giaccia, A.; Xing, L.; Umegaki, K. Selection of external beam radiotherapy approaches for precise and accurate cancer treatment. J. Radiat. Res. 2018, 59, i2–i10.

    Google Scholar 

  15. Barker, H. E.; Paget, J. T.; Khan, A. A.; Harrington, K. J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer2015, 15, 409–425}.

    CAS  Google Scholar 

  16. Peng, J.; Yang, Q.; Shi, K.; Xiao, Y.; Wei, X.; Qian, Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv. Drug Delivery Rev. 2019, 143, 37–67.

    CAS  Google Scholar 

  17. Fan, W.; Tang, W.; Lau, J.; Shen, Z.; Xie, J.; Shi, J.; Chen, X. Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv. Mater. 2019, 31, e1806381.

    Google Scholar 

  18. Rancoule, C.; Magné, N.; Vallard, A.; Guy, J. B.; Rodriguezlafrasse, C.; Deutsch, E.; Chargari, C. Nanoparticles in radiation oncology: From bench-side to bedside. Cancer Lett. 2016, 375, 256–262.

    CAS  Google Scholar 

  19. Song, G. S.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 2017, 29, 1700996.

    Google Scholar 

  20. Haume, K.; Rosa, S.; Grellet, S.; Smialek, M. A.; Butterworth, K. T.; Solov'yov, A. V.; Prise, K. M.; Golding, J.; Mason, N. J. Gold nano-particles for cancer radiotherapy: A review. Cancer Nanotechnol. 2016, 7, 8.

    Google Scholar 

  21. Wang, A. Z.; Tepper, J. E. Nanotechnology in radiation oncology. J. Clin. Oncol. 2014, 32, 2879–2885.

    CAS  Google Scholar 

  22. Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 2013, 65, 71–79.

    CAS  Google Scholar 

  23. Wardman, P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007, 19, 397–417.

    CAS  Google Scholar 

  24. Yang, Y. S.; Carney, R. P.; Stellacci, F.; Irvine, D. J. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes. ACS Nano2014, 8, 8992–9002}.

    CAS  Google Scholar 

  25. Al Zaki, A.; Joh, D.; Cheng, Z.; De Barros, A. L.; Kao, G.; Dorsey, J.; Tsourkas, A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano2014, 8, 104–112}.

    CAS  Google Scholar 

  26. Cheng, L.; Shen, S.; Shi, S.; Yi, Y.; Liu, Z. FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv. Funct. Mater. 2016, 26, 2185–2197.

    CAS  Google Scholar 

  27. He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding three-dimensional graphene/MnO2 composite networks as ultra light and flexible supercapacitor electrodes. ACS nano2013, 7, 174–182}.

    CAS  Google Scholar 

  28. Yermolayeva, Y. V.; Korshikova, T. I.; Tolmachev, A. V.; Yavetskiy, R. P. X-ray luminescence of core-shell structured SiO2/Lu2O3:Eu3+ and SiO2/Lu2Si2O7:Eu3+ particles. Radiat. Meas. 2011, 46, 551–554.

    CAS  Google Scholar 

  29. Zhang, X.; Luo, Z.; Jie, C.; Xiu, S.; Xie, J. Ultrasmall Au 10–12 (sg) 10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565–4568.

    CAS  Google Scholar 

  30. Zhao, N.; Yan, L.; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F. J. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem. Rev. 2019, 119, 1666–1762.

    CAS  Google Scholar 

  31. Xie, J.; Gong, L.; Zhu, S.; Yong, Y.; Gu, Z.; Zhao, Y. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater. 2019, 31, e1802244.

    Google Scholar 

  32. Cao, W.; Gu, Y.; Meineck, M.; Xu, H. The combination of chemotherapy and radiotherapy towards more efficient drug delivery. Chem. - Asian J. 2014, 9, 48–57.

    CAS  Google Scholar 

  33. Seiwert, T. Y.; Salama, J. K.; Vokes, E. E. The concurrent chemoradia-tion paradigm - general principles. Nat. Clin. Pract. Oncol. 2007, 4, 86–100.

    CAS  Google Scholar 

  34. Seiwert, T. Y.; Salama, J. K.; Vokes, E. E. The chemoradiation paradigm in head and neck cancer. Nat. Clin. Pract. Oncol. 2007, 4, 156–171.

    CAS  Google Scholar 

  35. Sun, D.; Chen, J.; Wang, Y.; Ji, H.; Peng, R.; Jin, L.; Wu, W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics2019, 9, 6885–6900}.

    CAS  Google Scholar 

  36. Oliveira Pinho, J.; Matias, M.; Gaspar, M. M. Emergent nano-technological strategies for systemic chemotherapy against melanoma. Nanomaterials2019, 9, E1455.

    Google Scholar 

  37. Curran, W. J., Jr.; Paulus, R.; Langer, C. J.; Komaki, R.; Lee, J. S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S. A.; Gore, E. et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: Randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 2011, 103, 1452–1460.

    CAS  Google Scholar 

  38. Lungu, I. I.; Grumezescu, A. M.; Volceanov, A.; Andronescu, E. Nanobiomaterials used in cancer therapy: An up-to-date overview. Molecules2019, 24, 3547.

    CAS  Google Scholar 

  39. Raza, F.; Zafar, H.; You, X.; Khan, A.; Wu, J.; Ge, L. Cancer nano-medicine: Focus on recent developments and self-assembled peptide nanocarriers. J. Mater. Chem. B2019, 7, 7639–7655}.

    CAS  Google Scholar 

  40. Eloy, J. O.; Petrilli, R.; Trevizan, L. N. F.; Chorilli, M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf., B2017, 159, 454–467.

    CAS  Google Scholar 

  41. Davies, C. d. L.; Lundstrøm, L. M.; Frengen, J.; Eikenes, L.; Bruland S, Ø. S.; Kaalhus, O.; Hjelstuen, M. H. B.; Brekken, C. Radiation improves the distribution and uptake of liposomal doxorubicin (CAELYX) in human osteosarcoma xenografts. Cancer Res. 2004, 64, 547–553.

    CAS  Google Scholar 

  42. Zhang, X.; Yang, H.; Gu, K.; Chen, J.; Rui, M.; Jiang, G.-L. In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. Int. J. Nanomed. 2011, 6, 437–444.

    Google Scholar 

  43. Liu, H.; Xie, Y.; Zhang, Y.; Cai, Y.; Li, B.; Mao, H.; Liu, Y.; Lu, J.; Zhang, L.; Yu, R. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials2017, 121, 130–143}.

    CAS  Google Scholar 

  44. Zhang, R.; Song, X.; Liang, C.; Yi, X.; Song, G.; Chao, Y.; Yang, Y.; Yang, K.; Feng, L.; Liu, Z. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials2017, 138, 13–21}.

    CAS  Google Scholar 

  45. Swain, S.; Sahu, P. K.; Beg, S.; Babu, S. M. Nanoparticles for cancer targeting: Current and future directions. Curr. Drug Delivery2016, 13, 1290–1302}.

    CAS  Google Scholar 

  46. Baumann, B. C.; Kao, G. D.; Mahmud, A.; Harada, T.; Swift, J.; Chapman, C.; Xu, X.; Discher, D. E.; Dorsey, J. F. Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget2013, 4, 64–79}.

    Google Scholar 

  47. Yu, Y.; Xu, S.; You, H.; Zhang, Y.; Yang, B.; Sun, X.; Yang, L.; Chen, Y.; Fu, S.; Wu, J. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Delivery2017, 24, 75–82.

    CAS  Google Scholar 

  48. Mao, H.; Xie, Y.; Ju, H.; Mao, H.; Zhao, L.; Wang, Z.; Hua, L.; Zhao, C.; Li, Y.; Yu, R. et al. Design of tumor microenvironment-responsive drug-drug micelle for cancer radiochemotherapy. ACS Appl. Mater. Interfaces2018, 10, 33923–33935}.

    CAS  Google Scholar 

  49. Cui, F.-B.; Li, R.-T.; Liu, Q.; Wu, P.-Y.; Hu, W.-J.; Yue, G.-F.; Ding, H.; Yu, L.-X.; Qian, X.-P.; Liu, B.-R. Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-PEP-PCL nanoparticles in gastric cancer. Cancer Lett. 2014, 346, 53–62.

    CAS  Google Scholar 

  50. Wiedenmann, N.; Valdecanas, D.; Hunter, N.; Hyde, S.; Buchholz, T. A.; Milas, L.; Mason, K. A. 130-nm albumin-bound paclitaxel enhances tumor radiocurability and therapeutic gain. Clin. Cancer Res. 2007, 13, 1868–1874.

    CAS  Google Scholar 

  51. Bouras, A.; Kaluzova, M.; Hadjipanayis, C. G. Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles. J. Neuro-Oncol. 2015, 124, 13–22.

    CAS  Google Scholar 

  52. Meng, L.; Cheng, Y.; Gan, S.; Zhang, Z.; Tong, X.; Xu, L.; Jiang, X.; Zhu, Y.; Wu, J.; Yuan, A. et al. Facile deposition of manganese dioxide to albumin-bound paclitaxel nanoparticles for modulation of hypoxic tumor microenvironment to improve chemoradiation therapy. Mol. Pharmaceutics2018, 15, 447–457}.

    CAS  Google Scholar 

  53. Wang, Z.; Shao, D.; Chang, Z.; Lu, M.; Wang, Y.; Yue, J.; Yang, D.; Li, M.; Xu, Q.; Dong, W.-F. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano2017, 11, 12732–12741.

    CAS  Google Scholar 

  54. He, L.; Lai, H.; Chen, T. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials2015, 51, 30–42}.

    CAS  Google Scholar 

  55. Chen, Y.; Song, G.; Dong, Z.; Yi, X.; Chao, Y.; Liang, C.; Yang, K.; Cheng, L.; Liu, Z. Drug-loaded mesoporous tantalum oxide nano-particles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small2017, 13, 1602869.

    Google Scholar 

  56. GuhaSarkar, S.; Pathak, K.; Sudhalkar, N.; More, P.; Goda, J. S.; Gota, V.; Banerjee, R. Synergistic locoregional chemoradiotherapy using a composite liposome-in-gel system as an injectable drug depot. Int. J. Nanomed. 2016, 11, 6435–6448.

    CAS  Google Scholar 

  57. Xu, S.; Tang, Y. Y.; Yu, Y. X.; Yun, Q.; Yang, J. P.; Zhang, H.; Peng, Q.; Sun, X.; Yang, L. L.; Fu, S. et al. Novel composite drug delivery system as a novel radio sensitizer for the local treatment of cervical carcinoma. Drug Delivery2017, 24, 1139–1147}.

    CAS  Google Scholar 

  58. Lan, M.; Zhao, S.; Liu, W.; Lee, C. S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthcare Mater. 2019, 8, e1900132.

    Google Scholar 

  59. Clement, S.; Deng, W.; Camilleri, E.; Wilson, B. C.; Goldys, E. M. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Sci. Rep. 2016, 6, 19954.

    CAS  Google Scholar 

  60. Wang, G. D.; Nguyen, H. T.; Chen, H.; Cox, P. B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics2016, 6, 2295–2305}.

    CAS  Google Scholar 

  61. Abliz, E.; Collins, J. E.; Bell, H.; Tata, D. B. Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin ii through X-ray induced visible luminescence from “rare-earth” formulated particles. J. X-Ray Sci. Technol. 2011, 19, 521–530.

    CAS  Google Scholar 

  62. Bulin, A. L.; Truillett, C.; Chouikrat, R.; Lux, F.; Frochot, C.; Amans, D.; Ledoux, G.; Tillement, O.; Perriat, P.; Barberi-Heyob, M. et al. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J. Phys. Chem. C2013, 117, 21583–21589.

    CAS  Google Scholar 

  63. Chen, H.; Sun, X.; Wang, G. D.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J.; Shen, B. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater. Horiz. 2017, 4, 1092–1101.

    CAS  Google Scholar 

  64. Chen, Z.; Zhao, K.; Bu, W.; Ni, D.; Shi, J. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2014, 127, 1770–1774.

    Google Scholar 

  65. Elmenoufy, A. H.; Tang, Y. A.; Hu, J.; Xu, H.; Yang, X. A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nano-particles. Chem. Commun. 2015, 51, 12247–12250.

    CAS  Google Scholar 

  66. Generalov, R.; Kuan, W. B.; Chen, W.; Kristensen, S.; Juzenas, P. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells. Colloids Surf. B2015, 129, 79–86}.

    CAS  Google Scholar 

  67. Homayoni, H.; Jiang, K.; Zou, X.; Hossu, M.; Rashidi, L. H.; Chen, W. Enhancement of protoporphyrin IX performance in aqueous solutions for photodynamic therapy. Photodiagn. Photodyn. Ther. 2015, 12, 258–266.

    CAS  Google Scholar 

  68. Kascakova, S.; Giuliani, A.; Lacerda, S.; Pallier, A.; Mercere, P.; Toth, E.; Refregiers, M. X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Res. 2015, 8, 2373–2379.

    CAS  Google Scholar 

  69. Kirakci, K.; Kubát, P.; Fejfarová, K.; Martinčík, J.; Nikl, M.; Lang, K. X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: A new class of nanoscintillators. Inorg. Chem. 2016, 55, 803–809.

    CAS  Google Scholar 

  70. Liang, S.; Li, P. P.; Wen, Y.; Lin, X. H.; Yang, H. H. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707496.

    Google Scholar 

  71. Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 2008, 92, 043901.

    Google Scholar 

  72. Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Lan, G.; Tang, H.; Pelizzari, C.; Fu, Y.-X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600–610.

    CAS  Google Scholar 

  73. Ma, L.; Zou, X.; Chen, W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J. Biomed. Nanotechnol. 2014, 10, 1501–1508.

    CAS  Google Scholar 

  74. Rossi, F.; Bedogni, E.; Bigi, F.; Rimoldi, T.; Cristofolini, L.; Pinelli, S.; Alinovi, R.; Negri, M.; Dhanabalan, S. C.; Attolini, G. et al. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Sci. Rep. 2015, 5, 7606.

    CAS  Google Scholar 

  75. Scaffidi, J. P.; Gregas, M. K.; Lauly, B.; Zhang, Y.; Vo-Dinh, T. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano2011, 5, 4679–4687}.

    CAS  Google Scholar 

  76. Sharmah, A.; Yao, Z.; Lu, L.; Guo, T. X-ray-induced energy transfer between nanomaterials under X-ray irradiation. J. Phys. Chem. C2016, 120, 3054–3060.

    CAS  Google Scholar 

  77. Takahashi, J.; Misawa, M. Analysis of potential radiosensitizing materials for X-ray-induced photodynamic therapy. Nanobiotechnology2007, 3, 116–126}.

    CAS  Google Scholar 

  78. Tang, Y. A.; Hu, J.; Elmenoufy, A. H.; Yang, X. Highly efficient fret system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Appl. Mater. Interfaces2015, 7, 12261–12269.

    CAS  Google Scholar 

  79. Wang, Z.; Chiu, Y.-H.; Honz, K.; Mak, K. F.; Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 2018, 18, 137–143.

    CAS  Google Scholar 

  80. Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166.

    CAS  Google Scholar 

  81. Abrahamse, H.; Kruger, C. A.; Kadanyo, S.; Mishra, A. Nanoparticles for advanced photodynamic therapy of cancer. Photomed. Laser Surg. 2017, 35, 581–588.

    Google Scholar 

  82. Yang, M.; Yang, T.; Mao, C. Enhancement of photodynamic cancer therapy by physical and chemical factors. Angew. Chem., Int. Ed. 2019, 58, 14066–14080.

    CAS  Google Scholar 

  83. Zou, X.; Yao, M.; Ma, L.; Hossu, M.; Han, X.; Juzenas, P.; Chen, W. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine2014, 9, 2339–2351}.

    CAS  Google Scholar 

  84. Chen, H.; Wang, G. D.; Chuang, Y.-J.; Zhen, Z.; Chen, X.; Biddinger, P.; Hao, Z.; Liu, F.; Shen, B.; Pan, Z. et al. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett. 2015, 15, 2249–2256.

    CAS  Google Scholar 

  85. Ahmad, F.; Wang, X.; Jiang, Z.; Yu, X.; Liu, X.; Mao, R.; Chen, X.; Li, W. Codoping enhanced radioluminescence of nanoscintillators for X-ray-activated synergistic cancer therapy and prognosis using metabolomics. ACS Nano2019, 13, 10419–10433}.

    CAS  Google Scholar 

  86. Zhong, X.; Wang, X.; Zhan, G.; Tang, Y. A.; Yao, Y.; Dong, Z.; Hou, L.; Zhao, H.; Zeng, S.; Hu, J. et al. NaCeF4:Gd,Tb scintillator as an X-ray responsive photosensitizer for multimodal imaging-guided synchronous radio/radiodynamic therapy. Nano Lett. 2019, 19, 8234–8244.

    CAS  Google Scholar 

  87. Ma, L.; Zou, X.; Bui, B.; Chen, W.; Song, K. H.; Solberg, T. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett. 2014, 105, 013702.

    Google Scholar 

  88. Sun, W.; Luo, L.; Feng, Y.; Cai, Y.; Zhuang, Y.; Xie, R.-J.; Chen, X.; Chen, H. Aggregation-induced emission gold clustoluminogens for enhanced low-dose X-ray-induced photodynamic therapy. Angew. Chem., Int. Ed. 2019, 58, 1–8..

    Google Scholar 

  89. Sun, W.; Shi, T.; Luo, L.; Chen, X.; Lv, P.; Lv, Y.; Zhuang, Y.; Zhu, J.; Liu, G.; Chen, X. et al. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy. Adv. Mater. 2019, 31, e1808024.

    Google Scholar 

  90. Lan, G.; Ni, K.; Xu, R.; Lu, K.; Lin, Z.; Chan, C.; Lin, W. Nanoscale metal-organic layers for deeply penetrating X-ray-induced photodynamic therapy. Angew. Chem., Int. Ed. 2017, 56, 12102–121

    CAS  Google Scholar 

  91. Ni, K.; Lan, G.; Veroneau, S. S.; Duan, X.; Song, Y.; Lin, W. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat. Commun. 2018, 9, 4321–4321.

    Google Scholar 

  92. Zhang, H.; Cui, W.; Qu, X.; Wu, H.; Qu, L.; Zhang, X.; Mäkilä, E.; Salonen, J.; Zhu, Y.; Yang, Z. et al. Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 7744–7749.

    CAS  Google Scholar 

  93. Doughty, A. C. V.; Hoover, A. R.; Layton, E.; Murray, C. K.; Howard, E. W.; Chen, W. R. Nanomaterial applications in photo-thermal therapy for cancer. Materials2019, 12, 779.

    CAS  Google Scholar 

  94. Alves, C. G.; Lima-Sousa, R.; de Melo-Diogo, D.; Louro, R. O.; Correia, I. J. Ir780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int. J. Pharm. 2018, 542, 164–175.

    CAS  Google Scholar 

  95. Chen, H.; Zhao, Y. Applications of light-responsive systems for cancer theranostics. ACS Appl. Mater. Interfaces2018, 10, 21021–21034}.

    CAS  Google Scholar 

  96. Lu, S.; Li, X.; Zhang, J.; Peng, C.; Shen, M.; Shi, X. Dendrimer-stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Adv. Sci. 2018, 5, 1801612.

    Google Scholar 

  97. Wang, S.; You, Q.; Wang, J.; Song, Y.; Cheng, Y.; Wang, Y.; Yang, S.; Yang, L.; Li, P.; Lu, Q. et al. MSOT/CT/MR imaging-guided and hypoxia-maneuvered oxygen self-supply radiotherapy based on one-pot MnO2-MSiO2@Au nanoparticles. Nanoscale2019, 11, 6270–6284.

    CAS  Google Scholar 

  98. Deng, Y.; Tian, X.; Lu, S.; Xie, M.; Hu, H.; Zhang, R.; Lv, F.; Cheng, L.; Gu, H.; Zhao, Y. et al. Fabrication of multifoliate PtRu bimetallic nanocomplexes for computed tomography imaging and enhanced synergistic thermoradiotherapy. ACS Appl. Mater. Interfaces2018, 10, 31106–31113}.

    CAS  Google Scholar 

  99. Feng, L.; Dong, Z.; Liang, C.; Chen, M.; Tao, D.; Cheng, L.; Yang, K.; Liu, Z. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials2018, 181, 81–91}.

    CAS  Google Scholar 

  100. Li, J.; Zu, X.; Liang, G.; Zhang, K.; Liu, Y.; Li, K.; Luo, Z.; Cai, K. Octopod PtCu nanoframe for dual-modal imaging-guided synergistic photothermal radiotherapy. Theranostics2018, 8, 1042–1058}.

    CAS  Google Scholar 

  101. Tang, W.; Dong, Z.; Zhang, R.; Yi, X.; Yang, K.; Jin, M.; Yuan, C.; Xiao, Z.; Liu, Z.; Cheng, L. Multifunctional two-dimensional core-shell mxene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS nano2019, 13, 284–294}.

    CAS  Google Scholar 

  102. Yang, G.; Zhang, R.; Liang, C.; Zhao, H.; Yi, X.; Shen, S.; Yang, K.; Cheng, L.; Liu, Z. Manganese dioxide coated WS2@Fe3O4/sSiO2 nanocomposites for pH-responsive MR imaging and oxygen-elevated synergetic therapy. Small2018, 14, 1702664.

    Google Scholar 

  103. Yong, Y.; Cheng, X.; Bao, T.; Zu, M.; Yan, L.; Yin, W.; Ge, C.; Wang, D.; Gu, Z.; Zhao, Y. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano2015, 9, 12451–12463}.

    CAS  Google Scholar 

  104. Li, A.; Li, X.; Yu, X.; Li, W.; Zhao, R.; An, X.; Cui, D.; Chen, X.; Li, W. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials2017, 112, 164–175.

    CAS  Google Scholar 

  105. Song, G.; Liang, C.; Gong, H.; Li, M.; Zheng, X.; Cheng, L.; Yang, K.; Jiang, X.; Liu, Z. Core-shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 2015, 27, 6110–6117.

    CAS  Google Scholar 

  106. Du, J.; Gu, Z.; Yan, L.; Yong, Y.; Yi, X.; Zhang, X.; Liu, J.; Wu, R.; Ge, C.; Chen, C. et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv. Mater. 2017, 29, 1701268.

    Google Scholar 

  107. Wang, J.; Tan, X.; Pang, X.; Liu, L.; Tan, F.; Li, N. MoS2 quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual- modal imaging guided synergistic photothermal/radiation therapy. ACS Appl. Mater. Interfaces2016, 8, 24331–24338}.

    CAS  Google Scholar 

  108. Xiao, Q.; Zheng, X.; Bu, W.; Ge, W.; Zhang, S.; Chen, F.; Xing, H.; Ren, Q.; Fan, W.; Zhao, K. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041–13048.

    CAS  Google Scholar 

  109. Zhou, R.; Wang, H.; Yang, Y.; Zhang, C.; Dong, X.; Du, J.; Yan, L.; Zhang, G.; Gu, Z.; Zhao, Y. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials2019, 189, 11–22}.

    CAS  Google Scholar 

  110. Zhou, Y.; Hu, Y.; Sun, W.; Lu, S.; Cai, C.; Peng, C.; Yu, J.; Popovtzer, R.; Shen, M.; Shi, X. Radiotherapy-sensitized tumor photothermal ablation using γ-polyglutamic acid nanogels loaded with polypyrrole. Biomacromolecules2018, 19, 2034–2042}.

    CAS  Google Scholar 

  111. Yu, L.; Hu, P.; Chen, Y. Gas-generating nanoplatforms: Material chemistry, multifunctionality, and gas therapy. Adv. Mater. 2018, 30, e1801964.

    Google Scholar 

  112. Fan, W.; Lu, N.; Shen, Z.; Tang, W.; Shen, B.; Cui, Z.; Shan, L.; Yang, Z.; Wang, Z.; Jacobson, O. et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nat. Commun. 2019, 10, 1241.

    Google Scholar 

  113. Liu, J.; Dong, J.; Zhang, T.; Peng, Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release2018, 286, 64–73}.

    CAS  Google Scholar 

  114. Fan, W.; Bu, W.; Zhang, Z.; Shen, B.; Zhang, H.; He, Q.; Ni, D.; Cui, Z.; Zhao, K.; Bu, J. et al. X-ray radiation-controlled no-release for on-demand depth-independent hypoxic radiosensitization. Angew. Chem., Int. Ed. 2015, 54, 14026–14030.

    CAS  Google Scholar 

  115. Du, Z.; Zhang, X.; Guo, Z.; Xie, J.; Dong, X.; Zhu, S.; Du, J.; Gu, Z.; Zhao, Y. X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization. Adv. Mater. 2018, 30, e1804046.

    Google Scholar 

  116. Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.

    Google Scholar 

  117. Song, G.; Chen, Y.; Liang, C.; Yi, X.; Liu, J.; Sun, X.; Shen, S.; Yang, K.; Liu, Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy. Adv. Mater. 2016, 28, 7143–7148.

    CAS  Google Scholar 

  118. Singh, B. N.; Prateeksha; Gupta, V. K.; Chen, J.; Atanasov, A. G. Organic nanoparticle-based combinatory approaches for gene therapy. Trends Biotechnol. 2017, S0167779917301907.

    Google Scholar 

  119. Xin, Y.; Huang, M.; Guo, W. W.; Huang, Q.; Zhang, L. Z.; Jiang, G. Nano-based delivery of RNAi in cancer therapy. Mol. Cancer2017, 16, 134.

    Google Scholar 

  120. Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv. Drug Delivery Rev. 2017, 115, 115–154.

    CAS  Google Scholar 

  121. Gaca, S.; Reichert, S.; Multhoff, G.; Wacker, M.; Hehlgans, S.; Botzler, C.; Gehrmann, M.; Rödel, C.; Kreuter, J.; Rödel, F. Targeting by CMHSP70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J. Control. Release2013, 172, 201–206}.

    CAS  Google Scholar 

  122. Yong, Y.; Zhang, C.; Gu, Z.; Du, J.; Guo, Z.; Dong, X.; Xie, J.; Zhang, G.; Liu, X.; Zhao, Y. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano2017, 11, 7164–7176.

    CAS  Google Scholar 

  123. Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discovery2019, 18, 175–196.

    CAS  Google Scholar 

  124. Huang, S.; Zhao, Q. Nanomedicine-combined immunotherapy for cancer. Curr. Med. Chem. 2019, 26, 1–14.

    Google Scholar 

  125. Carvalho, H. d. A.; Villar, R. C. Radiotherapy and immune response: The systemic effects of a local treatment. Clinics2018, 73, e557s.

    Google Scholar 

  126. Filatenkov, A.; Baker, J.; Mueller, A. M. S.; Kenkel, J.; Ahn, G. O.; Dutt, S.; Zhang, N.; Kohrt, H.; Jensen, K.; Dejbakhsh-Jones, S. et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin. Cancer Res. 2015, 21, 3727–3739.

    CAS  Google Scholar 

  127. McBride, W. H.; Chiang, C.-S.; Olson, J. L.; Wang, C.-C.; Hong, J.-H.; Pajonk, F.; Dougherty, G. J.; Iwamoto, K. S.; Pervan, M.; Liao, Y.-P. A sense of danger from radiation. Radiat. Res. 2004, 162, 1–19.

    CAS  Google Scholar 

  128. Schaue, D.; Kachikwu, E. L.; McBride, W. H. Cytokines in radiobiological responses: A review. Radiat. Res. 2012, 178, 505–523.

    Google Scholar 

  129. Weichselbaum, R. R.; Liang, H.; Deng, L.; Fu, Y.-X. Radiotherapy and immunotherapy: A beneficial liaison? Nat. Rev. Clin. Oncol. 2017, 14, 365–379.

    CAS  Google Scholar 

  130. Sharabi, A. B.; Lim, M.; DeWeese, T. L.; Drake, C. G. Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015, 16, e498–e509.

    Google Scholar 

  131. Song, W.; Musetti, S. N.; Huang, L. Nanomaterials for cancer immunotherapy. Biomaterials2017, 148, 16–30}.

    CAS  Google Scholar 

  132. Zhang, P.; Zhai, Y.; Cai, Y.; Zhao, Y.; Li, Y. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv. Mater. 2019, e1904156.

    Google Scholar 

  133. Kubackova, J.; Zbytovska, J.; Holas, O. Nanomaterials for direct and indirect immunomodulation: A review of applications. Eur. J. Pharm. Sci. 2019, 105139.

    Google Scholar 

  134. Wang, C.; Fan, W.; Zhang, Z.; Wen, Y.; Xiong, L.; Chen, X. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv. Mater. 2019, e1904329.

    Google Scholar 

  135. Min, Y.; Roche, K. C.; Tian, S.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S.; Herring, L. E.; Zhang, L.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882.

    CAS  Google Scholar 

  136. Appelbe, O. K.; Moynihan, K. D.; Flor, A.; Rymut, N.; Irvine, D. J.; Kron, S. J. Radiation-enhanced delivery of systemically administered amphiphilic-CPG oligodeoxynucleotide. J. Control. Release2017, 266, 248–255}.

    CAS  Google Scholar 

  137. Au, K. M.; Balhorn, R.; Balhorn, M. C.; Park, S. I.; Wang, A. Z. High-performance concurrent chemo-immuno-radiotherapy for the treatment of hematologic cancer through selective high-affinity ligand antibody mimic-functionalized doxorubicin-encapsulated nanoparticles. ACS Cent. Sci. 2019, 5, 122–144.

    CAS  Google Scholar 

  138. Meng, L.; Cheng, Y.; Tong, X.; Gan, S.; Ding, Y.; Zhang, Y.; Wang, C.; Xu, L.; Zhu, Y.; Wu, J. et al. Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano2018, 12, 8308–8322}.

    CAS  Google Scholar 

  139. Chen, Q.; Chen, J.; Yang, Z.; Xu, J.; Xu, L.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, e1802228.

    Google Scholar 

  140. Guo, Z.; Zhu, S.; Yong, Y.; Zhang, X.; Dong, X.; Du, J.; Xie, J.; Wang, Q.; Gu, Z.; Zhao, Y. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater. 2017, 29, 1704136.

    Google Scholar 

  141. Huang, P.; Zhang, Y.; Wang, W.; Zhou, J.; Sun, Y.; Liu, J.; Kong, D.; Liu, J.; Dong, A. Co-delivery of doxorubicin and 131I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J. Control. Release2015, 220, 456–464}.

    CAS  Google Scholar 

  142. Shih, Y.-H.; Peng, C.-L.; Chiang, P.-F.; Lin, W.-J.; Luo, T.-Y.; Shieh, M.-J. Therapeutic and scintigraphic applications of polymeric micelles: Combination of chemotherapy and radiotherapy in hepatocellular carcinoma. Int. J. Nanomed. 2015, 10, 7443–7454.

    CAS  Google Scholar 

  143. Werner, M. E.; Karve, S.; Sukumar, R.; Cummings, N. D.; Copp, J. A.; Chen, R. C.; Zhang, T.; Wang, A. Z. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials2011, 32, 8548–8554}.

    CAS  Google Scholar 

  144. Zhou, M.; Chen, Y.; Adachi, M.; Wen, X.; Erwin, B.; Mawlawi, O.; Lai, S. Y.; Li, C. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials2015, 57, 41–49}.

    CAS  Google Scholar 

  145. Chen, L.; Zhong, X.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C.; Chai, Z.; Liu, Z.; Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials2015, 66, 21–28}.

    Google Scholar 

  146. Meng, Z.; Chao, Y.; Zhou, X.; Liang, C.; Liu, J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M. et al. Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano2018, 12, 9412–9422}.

    CAS  Google Scholar 

  147. Tian, L.; Chen, Q.; Yi, X.; Chen, J.; Liang, C.; Chao, Y.; Yang, K.; Liu, Z. Albumin-templated manganese dioxide nanoparticles for enhanced radioisotope therapy. Small2017, 13, 1700640.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Post-Doctor Research Project, West China Hospital, Sichuan University (No. 2018HXBH032) and Sichuan Science and Technology Program (No. 2019YFS0109), 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (No. ZYJC18035), China Postdoctoral Science Foundation (No. 2019M663505), and Postdoctoral Interdisciplinary Innovation Foundation, Sichuan University (No. 0040204153243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyang Gong or Cheng Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gao, L., Guo, Q. et al. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 13, 2579–2594 (2020). https://doi.org/10.1007/s12274-020-2722-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2722-z

Keywords

Navigation