Skip to main content

Active and Passive Electrical Signaling in Plants

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

Electrical signaling on long and short distances exists in plants. There are three major types of electrical signaling in plants and animals: action potentials, electrotonic potentials, and graded potentials. The action potential in plants can propagate over the entire length of the cell membrane and along the conductive bundles of tissue with constant amplitude, duration, and speed. Electrotonic potentials exponentially decrease with distance. An intermediate place takes so-called graded potentials that involve the process of electrical excitation but do not evolve into full-fledged action potentials. A graded potential is an electrical signal that corresponds to the size of the stimulus. Electrical signals can propagate along the plasma membrane on short distances in plasmodesmata, and on long distances in a phloem. In this chapter, we discuss electrical signaling in the Venus flytrap and Mimosa pudica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe T (1980) The shortening and action potential of the cortex in the main pulvinus of Mimosa pudica. Bot Mag Tokyo 93:247–251

    Article  Google Scholar 

  • Abe T (1981) Chloride ion efflux during an action potential in the main pulvinus of Mimosa pudica. Bot Mag Tokyo 94:379–383

    Article  CAS  Google Scholar 

  • Abe T, Oda K (1976) Resting and action potentials of excitable cells in the main pulvinus of Mimosa pudica. Plant Cell Physiol 17:1343–1346

    Google Scholar 

  • Beilby MJ (2007) Action potentials in charophytes. Int Rev Cytol 257:43–82

    Article  PubMed  CAS  Google Scholar 

  • Benolken RM, Jacobson SL (1970) Response properties of a sensory hair excised from Venus’s flytrap. J Gen Physiol 56:64–82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bernard C (1878) Lectures on phenomena of life common to animals and plants. J.B. Balliere and Son, Paris

    Google Scholar 

  • Bertholon M (1783) De l’electricite des vegetaux: ouvrage dans lequel on traite de l’electricite de l’atmosphere sur les plantes, de ses effets sur leconomie des vegetaux, de leurs vertus medico. P.F. Didot Jeune, Paris

    Google Scholar 

  • Bose JC (1907) Comparative electro-physiology, a physico-physiological study. Longmans, Green & Co, London

    Google Scholar 

  • Bose JC (1913) Researches on irritability of plants. Longmans, London

    Book  Google Scholar 

  • Bose JC (1918) Life movements in plants. B.R. Publishing Corp, Delhi

    Google Scholar 

  • Bose JC (1926) The nervous mechanism of plants. Longmans, Green and Co., London

    Google Scholar 

  • Bose JC (1928) The motor mechanism of plants. Longmans Green, London

    Google Scholar 

  • Buchen B, Hensel D, Sievers A (1983) Polarity in mechanoreceptor cells of trigger hairs of Dionaea muscipula. Planta 158:458–468

    Article  PubMed  CAS  Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula. Philos Proc R Soc Lond 21:495–496

    Google Scholar 

  • Christmann A, Grill E (2013) Plant biology: electric defence. Nature 500:404–405

    Article  PubMed  CAS  Google Scholar 

  • Dainty J (1963) Water relations of plant cells. Adv Bot Res 1:279–326

    Article  CAS  Google Scholar 

  • Darwin C (1880) The power of movements in plants. John Murra, London

    Google Scholar 

  • DiPalma JR, Mohl R, Best W (1961) Action potential and contraction of Dionaea muscipula (Venus flytrap). Science 133:878–879

    Article  CAS  Google Scholar 

  • DiPalma JR, McMichael R, DiPalma M (1966) Touch receptor of Venus flytrap, Dionaea muscipula. Science 152:539–540

    Article  PubMed  CAS  Google Scholar 

  • Eisen D, Janssen D, Chen X, Choa FS, Kostov D, Fan J (2013) Closing a Venus Flytrap with electrical and mid-IR photon stimulations. In: Proceedings of SPIE 8565, Photonic therapeutics and diagnostics IX, 85655I (March 8, 2013); doi:10.1117/12.2005351

  • Escalante-Pérez M, Krol E, Stange A, Geiger D, Al-Rasheid KAS, Hause B, Neher E, Hedrich RA (2011) Special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proc Natl Acad Sci U S A 108:15492–15497

    Article  PubMed  PubMed Central  Google Scholar 

  • Eschrich W (1989) Stofftransport in Bäumen. Sauerländer, Frankfurt

    Google Scholar 

  • Fensom DS (1980) Problems arising from Munch-type pressure flow mechanism of sugar transport in phloem. Can J Bot 59:425–432

    Article  Google Scholar 

  • Fensom DS, Spanner DC (1969) Electro-osmotic and biopotential measurement on phloem strands of Nymhoides. Planta 88:321–331

    Article  PubMed  CAS  Google Scholar 

  • Fleurat-Lessard P, Bonnemain J (1978) Structural and ultrastructural characteristics of vascular apparatus of the sensitive plant (Mimosa pudica L). Protoplasma 94:127–143

    Article  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plantarum 83:529–533

    Article  Google Scholar 

  • Fromm J, Eschrich W (1988) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. I. The movement of 14C-labelled photoassimilates. Trees 2:7–17

    Article  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt G (1914) Physiological plant anatomy. Macmillan, London

    Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811

    Article  PubMed  CAS  Google Scholar 

  • Heyl JG (1933) Der Einfluss von Aussenfaktoren auf das Bluten der Pflanzen. Planta 20:294–353

    Article  CAS  Google Scholar 

  • Hodick D, Sievers A (1986) The influence of Ca2+ on the action potential in mesophyll cells of Dionaea muscipula Ellis. Protoplasma 133:83–84

    Article  Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18

    Article  PubMed  CAS  Google Scholar 

  • Hooke R (1667) Micrographia. The Royal Society, London

    Google Scholar 

  • Houwink AL (1935) The conduction of excitation in Mimosa pudica. Recuril des Travaux Botaniques Neerlandais 32:51–91

    Google Scholar 

  • Houwink AL (1938) The conduction of excitation in Clematis zeylanica and in Mimosa pudica. Annales du Jardin Botanique de Buitenzorg 48:10–16

    Google Scholar 

  • Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta 1662:113–137

    Article  PubMed  CAS  Google Scholar 

  • Jack JJ, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon, Oxford

    Google Scholar 

  • Jacobson SL (1965) Receptor response in Venus’s flytrap. J Gen Physiol 49:117–129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jovanov E, Volkov AG (2012) Plant electrostimulation and data acquisition. In: Volkov AG (ed) Plant electrophysiology – methods and cell electrophysiology. Springer, Berlin, pp 45–67

    Chapter  Google Scholar 

  • Kaiser H, Grams TEE (2006) Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. J Exp Bot 57:2087–2092

    Article  PubMed  CAS  Google Scholar 

  • Keller R (1930) Der elektrische Factor des Wassertransporte in Luhte der Vitalfarbung. Ergeb Physiologie 30:294–407

    Article  Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    Article  Google Scholar 

  • Krol E, Dziubinska H, Stolarz M, Trebacz K (2006) Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula. Biol Plantarum 50:411–416

    Article  CAS  Google Scholar 

  • Krol E, Płachno BJ, Adamec L, Stolarz M, Dziubińska H, Trebacz K (2012) Quite a few reasons for calling carnivores ‘the most wonderful plants in the world’. Ann Bot 109:47–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic Press, San Diego

    Google Scholar 

  • Lee H, Xia C, Fang N (2010) First jump of microgel: actuation speed enhancement by elastic instability. Soft Matter 6:4342–4345

    Article  CAS  Google Scholar 

  • Malone M (1994) Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytol 128:49–56

    Article  Google Scholar 

  • Markin VS, Volkov AG (2012) Morphing structures in the Venus flytrap. In: Volkov AG (ed) Plant electrophysiology – signaling and responses. Springer, Berlin, pp 1–31

    Chapter  Google Scholar 

  • Markin VS, Volkov AG, Jovanov E (2008) Active movements in plants: mechanism of trap closure by Dionaea muscipula Ellis. Plant Signal Behav 3:778–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Milne A, Beamish T (1999) Inhalation and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can J Anaesth 46:287–289

    Article  PubMed  CAS  Google Scholar 

  • Mohr H, Schopfer P (1995) Plant physiology. Springer, Berlin, pp 528–529

    Google Scholar 

  • Nordestrom BEW (1983) Biologically closed electrical circuits. Clinical, experimental and theoretical evidence for an additional circulatory system. Nordic Medical Publications, Uppsala

    Google Scholar 

  • Oda K, Abe T (1972) Action potential and rapid movement in the main pulvinus of Mimosa pudica. Bot Mag Tokyo 85:135–145

    Article  Google Scholar 

  • Okazaki N, Takai K, Sato T (1993) Immobilization of a sensitive plant, Mimosa pudica L., by volatile anesthetics. Mausi 42:1190–1193

    CAS  Google Scholar 

  • Paes T, De Luccia B (2012) Mimosa pudica, Dionaea muscipula and anesthetics. Plant Signal Behav 7:1163–1167

    Article  Google Scholar 

  • Pavlovič A, Demko V, Hudak J (2010) Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration. Ann Bot 105:37–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritter JW (1811) Electrische Versuche an der Mimosa pudica L. In Parallel mit gleichen Versuchen an Fröschen. Denkschr Köningl Akad Wiss (München) 2:345–400

    Google Scholar 

  • Roberts AG (2005) Plasmodesmal structure and development. In: Oparka KJ (ed) Plasmodesmata. Blackwell, Oxford, pp 1–32

    Chapter  Google Scholar 

  • Roblin G (1979) Mimosa pudica: a model for the study of the excitability in plants. Biol Rev 54:135–153

    Article  Google Scholar 

  • Roblin G (1982) Movements, bioelectrical events and proton excretion induced in the pulvini of Mimosa pudica L. by a period of darkness. Zeitschrift Pflanzenphysiologie 108:295–304

    Article  Google Scholar 

  • Roshchina VI (2001) Neurotransmitters in plant life. Science Publishers, Inc., Enfield, NH

    Google Scholar 

  • Sampson KJ, Henriquez CS (2005) Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Am J Physiol Heart Circ Physiol 289:H350–H360

    Article  PubMed  CAS  Google Scholar 

  • Shahinpoor M (2011) Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspir Biomim 6:046004-1-11. doi:10.1088/1748-3182/6/4/046004

    Article  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37:10–21

    Google Scholar 

  • Shepherd GM (1994) Neurobiology. Oxford University Press, New York

    Google Scholar 

  • Shimmen T (2006) Electrophysiology in mechanosensing and wounding response. In: Volkov AG (ed) Plant electrophysiology. Theory and methods. Springer, Berlin, pp 319–339

    Chapter  Google Scholar 

  • Sibaoka T (1962) Excitable cells in Mimosa. Science 137:226–226

    Article  PubMed  CAS  Google Scholar 

  • Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20:49–74

    PubMed  CAS  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Ann Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  • Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag Tokyo 104:73–95

    Article  Google Scholar 

  • Stoeckel H, Takeda K (1993) Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells of Mimosa pudica. J Membr Biol 131:179–192

    Article  PubMed  CAS  Google Scholar 

  • Takamura T (2006) Electrochemical potential around the plant root in relation to metabolism and growth acceleration. In: Volkov AG (ed) Plant electrophysiology – theory and methods. Springer, Berlin, pp 341–374

    Chapter  Google Scholar 

  • Taya M (2003) Bio-inspired design of intelligent materials. Proc SPIE 5051:54–65

    Article  Google Scholar 

  • Tinz-Füchmeier A, Gradmann D (1990) Laser-Interferometric re-examination of rapid conductance of excitation in Mimosa pudica. J Exp Bot 41:15–19

    Article  Google Scholar 

  • Trebacz K, Bush MB, Hejnowicz Z, Sievers A (1996) Cyclopiazonic acid disturbs the regulation of cytosolic calcium when repetitive action potentials are evoked in Dionaea traps. Planta 198:623–626

    Article  CAS  Google Scholar 

  • Trebacz K, Sievers A (1998) Action potential evoked by light in traps of Dionaea muscipula Ellis. Plant Cell Physiol 39:369–372

    Article  CAS  Google Scholar 

  • Umrath K (1937) Der Erregungsvorgang bei höheren Pflancen. Ergebnis Biologie 14:1–42

    Article  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483:150–156

    Article  CAS  Google Scholar 

  • Volkov AG (2006a) Electrophysiology and phototropism. In: Balushka F, Manusco S, Volkman D (eds) Communication in plants. Springer, Berlin, pp 351–367

    Chapter  Google Scholar 

  • Volkov AG (ed) (2006b) Plant electrophysiology – theory and methods. Springer, Berlin

    Google Scholar 

  • Volkov AG (ed) (2012a) Plant electrophysiology. Methods and cell electrophysiology. Springer, Berlin

    Google Scholar 

  • Volkov AG (ed) (2012b) Plant electrophysiology. Signaling and responses. Springer, Berlin

    Google Scholar 

  • Volkov AG, Markin VS (2012) Phytosensors and phytoactuators. In: Volkov AG (ed) Plant electrophysiology – signaling and responses. Springer, Berlin, pp 173–206

    Chapter  Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DL, Markin VS (1998) Liquid interfaces in chemistry and biology. Wiley, New York

    Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkov AG, Adesina T, Jovanov E (2008a) Charge induced closing of Dionaea muscipula Ellis trap. Bioelectrochemistry 74:16–21

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008b) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008c) Plant electrical memory. Plant Signal Behav 3:490–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkov AG, Coopwood KJ, Markin VS (2008d) Inhibition of the Dionaea muscipula Ellis trap closure by ion and water channels blockers and uncouplers. Plant Sci 175:642–649

    Article  CAS  Google Scholar 

  • Volkov AG, Carrell H, Baldwin A, Markin VS (2009a) Electrical memory in Venus flytrap. Bioelectrochemistry 75:142–147

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009b) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010a) Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant Cell Environ 33:163–173

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Baker KD, Markin VS (2010b) Mechanical and electrical anisotropy in Mimosa pudica. Plant Signal Behav 5:1211–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkov AG, Foster JC, Jovanov E, Markin VS (2010c) Anisotropy and nonlinear properties of electrochemical circuits in leaves of Aloe vera L. Bioelectrochemistry 81:4–9

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010d) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant Cell Environ 33:816–827

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010e) Molecular electronics in pinnae of Mimosa pudica. Plant Signal Behav 5:826–831

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Volkov AG, Baker K, Foster JC, Clemmens J, Jovanov E, Markin VS (2011a) Circadian variations in biologically closed electrochemical circuits in Aloe vera and Mimosa pudica. Bioelectrochemistry 81:39–45

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Pinnock MR, Lowe DC, Gay MS, Markin VS (2011b) Complete hunting cycle of Dionaea muscipula: consecutive steps and their electrical properties. J Plant Physiol 168:109–120

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, O’Neal L, Volkova MI, Markin VS (2013a) Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress. J Plant Physiol 170:1317–1327

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Vilfranc CL, Murphy VA, Mitchell CM, Volkova MI, O’Neal L, Markin VS (2013b) Electrotonic and action potentials in the Venus flytrap. J Plant Physiol 170:838–846

    Article  PubMed  CAS  Google Scholar 

  • Wallace RH (1931) Studies of sensitivity of Mimosa pudica. 1. The effect of certain animal anesthetics upon sleep movements. Ann J Bot 18:102–111

    Article  Google Scholar 

  • Yang RT, Scott CL, Zhang MJ, Xia LJ (2010) A mathematical model on the closing and opening mechanism for Venus flytrap. Plant Signal Behav 5:968–978

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review is based upon work supported in part by the National Science Foundation under Grant No. CBET-1064160 and in part by the U.S. Army Research Office under contract/grant number W911NF-11-1-0132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Volkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Volkov, A.G., Markin, V.S. (2015). Active and Passive Electrical Signaling in Plants. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_6

Download citation

Publish with us

Policies and ethics