Skip to main content

Electrophysiology in Mechanosensing and Wounding Response

  • Chapter
Plant Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry WH (1968) Coupling of excitation and cessation of cyclosis in Nitella: role of divalent cations. J Cell Physiol 72:153–160.

    Article  CAS  PubMed  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631.

    Article  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110.

    Article  CAS  Google Scholar 

  • Falk LC, Edwards KL, Pickard BG, Misler S (1988) A stretch-activated anion channel in tobacco protoplast. FEBS Lett 237:141–144.

    Article  Google Scholar 

  • Franchisse J-M, Desbiez O, Champagnat P, Thellier M (1985) Transmission of a traumatic signal via a wave of electric depolarization and induction of correlations between the cotyledonary buds in Bidens pilosus. Physiol Plant 64:48–52.

    Article  Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680.

    CAS  Google Scholar 

  • Hayama T, Shimmen T, Tazawa M (1979) Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation in Characeae internodal cells. Protoplasma 99:305–321.

    Article  Google Scholar 

  • Hodick D, Sievers A (1986) The influence of Ca2+ on the action potential in mesophyll cells of Dionaea muscipula Ellis. Protoplasma 133:83–84.

    Article  Google Scholar 

  • Iijima T, Sibaoka T (1981) Action potential in the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 22:1595–1601.

    Google Scholar 

  • Iijima T, Sibaoka T (1985) Membrane potentials in excitable cells of Aldrovanda vesiculosa trap-lobes. Plant Cell Physiol 26:1–13.

    CAS  Google Scholar 

  • Jaffe MJ, Forbes S (1993) Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul 12:313–324.

    Article  CAS  PubMed  Google Scholar 

  • Julien JL, Frachisse JM (1992) Involvement of the proton pump and proton conductance change in the wave of depolarization induced by wounding in Bidens pilosa. Can J Bot 70:1451–1458.

    CAS  Google Scholar 

  • Julien JL, Desbiez MO, de Jaegher M, Frachisse JM (1991) Characteristics of the wave of depolarization induced by wounding in Bidens pilosa L. J Exp Bot 42:131–137.

    Article  Google Scholar 

  • Kameyama K, Kishi Y, Yoshimura M, Kanzawa N, Sameshima M, Tsuchiya T (2000) Tyrosine phosphorylation in plant bending. Nature 407:37.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. Protoplasmatologia VIII/3/a. Springer, Vienna.

    Google Scholar 

  • Kamiya N (1986) Cytoplasamic streaming in giant algal cells: a historical survey of experimental approaches. Bot Mag Tokyo 99:441–467.

    Article  CAS  Google Scholar 

  • KanekoT, Saito C, ShimmenT, Kikuyama, M. (2005) Possible involvement of mechanosensitive Ca2+ channels of plasma membrane in mechanoperception in Chara. Plant Cell Physiol. 46: 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Kikuyama M (1986a) Ion fluxes during excitation of Characeae. Plant Cell Physiol 27:1213–1216.

    CAS  Google Scholar 

  • Kikuyama M (1986b) Tonoplast action potential of Characeae. Plant Cell Physiol 27:1461–1468.

    CAS  Google Scholar 

  • Kikuyama M (1988) Ca2+-increases the Cl- efflux of the permeabilized Chara. Plant Cell Physiol 29:105–108.

    CAS  Google Scholar 

  • Kikuyama M, Tazawa M (1976) Tonoplast action potential in Nitella in relation to vacuolar chloride concentration. J Membr Biol 29:95–110.

    Article  CAS  PubMed  Google Scholar 

  • Kikuyama M, Tazawa M (1983) Transient increase of intracellular Ca2+ during excitation of tonoplast-fee Chara cells. Protoplasma 117:62–67.

    Article  CAS  Google Scholar 

  • Kikuyama M, Oda K, Shimmen T, Hayama T, Tazawa M (1984) Potassium and chloride effluxes during excitation of Characeae cells. Plant Cell Physiol 25:965–974.

    CAS  Google Scholar 

  • Kishimoto U (1968) Response of Chara internodes to mechanical stimulation. Ann Rep Biol Works, Fac Sci, Osaka Univ 16:61–66.

    Google Scholar 

  • Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89:4967–4971.

    Article  CAS  PubMed  Google Scholar 

  • Kumon K, Tsurumi S (1984) Ion efflux from pulvinar cells during slow downward movement of the petiole of Mimosa pudica L. induced by photostimulation. J Plant Physiol 115:439–443.

    CAS  Google Scholar 

  • Malone M (1992) Kinetics of wound-induced hydraulic signals and variation potentials in wheat seedlings. Planta 187:505–510.

    Article  Google Scholar 

  • Malone M, Stankovic B (1991) Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant Cell Environ 14:431–436.

    Article  Google Scholar 

  • Mertz SM Jr, Higinbotham N (1976) Transmembrane electropotential in barley roots as related to cell type, cell location, and cutting and aging effects. Plant Physiol 57:123–128.

    Article  CAS  PubMed  Google Scholar 

  • Meyer AJ, Weisenseel MH (1997) Wound-induced changes of membrane voltage, endogenous currents, and ion fluxes in primary roots of maize. Plant Physiol 114:989–998.

    CAS  PubMed  Google Scholar 

  • Mimura T, Shimmen T (1994) Characterization of the Ca2+-dependent Cl- efflux in perfused Chara cells. Plant Cell Physiol 35:793–800.

    CAS  Google Scholar 

  • Oda K (1976) Simultaneous recording of potassium and chloride effluxes during an action potential in Chara corallina. Plant Cell Physiol 17:525–528.

    Google Scholar 

  • Qi Z, Kishigami A, Nakagawa Y, Iida H, Sokabe M (2004) A mechanosensitive anion channels in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol 45:1704–1708.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57.

    Article  CAS  Google Scholar 

  • Robin G (1979) Mimosa pudica: a model for the study of the excitability in plants. Biol Rev 54:135–153.

    Article  Google Scholar 

  • Robin G (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol 26:455–461.

    Google Scholar 

  • Robin G, Bonnemain J-L (1985) Propagation in Vicia faba stem of a potential variation induced by wounding. Plant Cell Physiol 26:1273–1283.

    Google Scholar 

  • Samejima M, Sibaoka T (1980) Changes in the extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery. Plant Cell Physiol 21:467–479.

    CAS  Google Scholar 

  • Shiina T, Tazawa M (1987a) Ca2+-activated Cl- channel in plasmalemma of Nitellopsis obtusa. J Membr Biol 99:137–146.

    Article  CAS  Google Scholar 

  • Shiina T, Tazawa M (1987b) Demonstration and characterization of Ca2+ channel in tonoplast-free cells of Nitellopsis obtusa. J Membrane Biol 96:263–276.

    Article  CAS  Google Scholar 

  • Shiina T, Tazawa M (1988) Ca2+-dependent Cl- efflux in tonolast-free cells of Nitellopsis obtusa. J Membr Biol 106:135–139.

    Article  CAS  Google Scholar 

  • Shimmen T (1988) Characean actin bundles as a tool for studying actomyosin-based motility. Bot Mag Tokyo 101:533–544.

    Article  CAS  Google Scholar 

  • Shimmen T (1996) Studies on mechanoperception in characean cells: development of a monitoring apparatus. Plant Cell Physiol 37:591–597.

    CAS  Google Scholar 

  • Shimmen T (1997a) Studies on mechanoperception in characean cells: pharmacological analysis. Plant Cell Physiol 38:139–148.

    CAS  Google Scholar 

  • Shimmen T (1997b) Studies on mechanoperception in Characeae: effect of external Ca2+ and Cl-. Plant Cell Physiol 38:691–697.

    CAS  Google Scholar 

  • Shimmen T (1997c) Studies on mechanoperception in Characeae: decrease in electrical membrane resistance in receptor potentials. Plant Cell Physiol 38:1298–1301.

    CAS  Google Scholar 

  • Shimmen T (2001) Electrical perception of “death message” in Chara: involvement of turgor pressure. Plant Cell Physiol 42:366–373.

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T (2002) Electrical perception of “death message” in Chara: analysis of rapid component and ionic process. Plant Cell Physiol 43:1575–1584.

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T (2003) Studies on mechanoperception in the Characeae: transduction of pressure signals into electrical signals. Plant Cell Physiol 44:1215–1224.

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T (2005) Electrical perception of “death message” in Chara: analysis of K+-sensitive depolarization. Plant Cell Physiol. 46: 1839–1847.

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T (2006) Electrical perception of “death message” in Chara: characterization of K+-induced depolarization. Plant Cell Physiol. 47:559–562.

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T, MacRobbie EAC (1987) Characterization of two proton transport systems in the tonoplast of plasmalemma-permeabilized Nitella cells. Plant Cell Physiol 28:1023–1031.

    CAS  Google Scholar 

  • Shimmen T, Nishikawa S (1988) Studies on the tonoplast action potential of Nitella flexlilis. J Membr Biol 101:133–140.

    Article  CAS  Google Scholar 

  • Shimmen T, Tazawa M (1977) Control of membrane potential and excitability of Chara cells with ATP and Mg2+. J Membr Biol 37:167–192.

    Article  CAS  Google Scholar 

  • Shimmen T, Tazawa M (1978) Intracellular chloride and potassium in relation to excitability of Chara membrane. J Membr Biol 55:223–232.

    Google Scholar 

  • Shimmen T, Tazawa M (1983) Control of cytoplasmic streaming by ATP, Mg2+ and cytochalasin B in permeabilized Characeae cell. Protoplasma 115:18–24.

    Article  CAS  Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72.

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T, Kikuyama M, Tazawa M (1976) Demonstration of two stable potential states of plasmalemma of Chara without tonoplast. J Membr Biol 30:249–270.

    Article  CAS  Google Scholar 

  • Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994) Characean cells as a tool for studying electrophysiological charcteristics of pant cells. Cell Struct Funct 19:263–278.

    Article  CAS  PubMed  Google Scholar 

  • Sibaoka T (1964) Response of plants to stimuli. In: Ashida J, Kawakita A, Yoshikawa H, Miyachi D, Okada I, Sakaguchi K, Tamiya H, Yamada T (eds) Seibutsu-no-hannousei (in Japanese). Kyoritsu-Shuppan, Tokyo, pp 133–166.

    Google Scholar 

  • Sibaoka T (1981) Ugoku-Shokubutsu (action plants) (in Japanese). Tokyo Daigaku-Shuppankai, Tokyo.

    Google Scholar 

  • Sibaoka T (1991) Rapid plant movement triggered by action potentials. Bot Mag Tokyo 104:73–95.

    Article  Google Scholar 

  • Sibaoka T, Tabata T (1981) Electrotonic coupling between adjacent internodal cells of Chara braunii: transmission of action potentials beyond the node. Plant Cell Physiol 22:397–411.

    Google Scholar 

  • Stahlberg R, Cosgrove DJ (1994) Comparison of electric and growth responses to excision in cucumber and pea seedlings. I. Short-distance effects are a result of wounding. Plant Cell Environ 17:1143–1151.

    Article  CAS  PubMed  Google Scholar 

  • Stankovic B, Davies E (1996) Both action potential and variation potential induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279.

    Article  CAS  PubMed  Google Scholar 

  • Stankovic B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088.

    CAS  PubMed  Google Scholar 

  • Staves MP, Wayne R (1993) The touch-induced action potential in Chara: inquiry into the ionic bases and the mechanoreceptor. Aust J Plant Physiol 20:471–488.

    Article  CAS  Google Scholar 

  • Tazawa M, Kishimoto U, Kikuyama M (1974) Potassium, sodium and chloride in the protoplasm of Characeae. Plant Cell Physiol 15:103–110.

    CAS  Google Scholar 

  • Tazawa M, Kikuyama M, Shimmen T (1976) Electric characteristics and cytoplasmic streaming of Characeae cell lacking tonoplast. Cell Struct Funct 1:165–176.

    Article  CAS  Google Scholar 

  • Tominaga Y, Shimmen T, Tazawa M (1983) Control of cytoplasmic streaming by extracllular Ca2+ in permeabilized Nitella cells. Protoplasma 116:75–77.

    Article  CAS  Google Scholar 

  • Tominaga Y, Wayne R, Tung HYL, Tazawa M (1987) Phosphorylation-dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming in characean cells. Protoplasma 136:161–169.

    Article  CAS  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Bugg IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell J, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65.

    Article  CAS  Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296:647–651.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimmen, T. (2006). Electrophysiology in Mechanosensing and Wounding Response. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_14

Download citation

Publish with us

Policies and ethics