Skip to main content
Log in

Rapid plant movements triggered by action potentials

  • Invited article
  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

Rapid bendings of the pulvinus inMimosa pudica, of the trap lobes inDionaea muscipula andAldrovanda vesiculosa, and of the tentacle in Drosera are triggered by action potentials in their motor cells. The action potential ofMimosa may be a C1-spike, and that ofDionaea andAldrovanda may be a Ca2+-spike. Propagation of action potentials in the petiole or motor organ is thought to be electrotonie, cell-to-cell, transmission. The Ca 2+ release from unidentified organelles in the pulvinus or the Ca2+ influx of the cells in the trap with the action current and activation of contractile fibrillar network having ATPase activity in the cytoplasm must be involved in the rapid bending. Contractions of fibrils may open pores in the membrane of the motor cells upon activation. Outward bulk flow of the vacuolar sap through these pores, due to the pressure inside the cell, must result in turgor loss of the motor cells and then the bending of the organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T. 1980. The shortening and action potential of the cortex in the main pulvinus ofMimosa pudica. Bet. Mag. Tokyo93: 247–251

    Google Scholar 

  • . 1981. Chloride ion efflux during an action potential in the main pulvinus ofMimosa pudica. Bet. Mag. Tokyo94: 379–383.

    CAS  Google Scholar 

  • . 1985. Effects of osmotic concentrations and IAA on the rapid shortening of the cortex in the main pulvinus ofMimosa pudica. Bet. Mag. Tokyo98: 439–447.

    CAS  Google Scholar 

  • andK. Oda. 1976. Resting and action potentials of excitable cells in the main pulvinus ofMimosa pudica. Plant Cell Physiol.17: 1343–1346.

    Google Scholar 

  • and. 1982. Changes in membrane resistance during excitation in the excitable cells ofMimosa pudica L. Sci. Rep. Fukushima Univ.32: 43–48.

    Google Scholar 

  • Allen, R.D. 1969. Mechanism of the seismonastic reaction inMimosa pudica. Plant Physiol.44: 1101–1107.

    PubMed  CAS  Google Scholar 

  • Ashida, J. 1934. Studies on the leaf movement ofAldrovanda vesiculosa L. I. Process and mechanism of the movement. Mem. Coll. Sci. Kyoto Imp. Univ. Ser. B9: 141–244.

    Google Scholar 

  • Ball, N.G. 1969. Nastie responses.In M.B. Wilkins, ed., Physiology of Plant Growth and Development, pp. 277–300. McGraw-Hill, London.

    Google Scholar 

  • Balmer, R.T. andJ.G. Franks. 1975. Contractile characteristics ofMimosa pudica L. Plant Physiol.86: 464–467.

    Google Scholar 

  • Baskin, S.I. andG.S. Cooper. 1980. Mechanisms of movement inMimosa pudica — a phamacological approach. Gen. Pharmac.11: 135–139.

    CAS  Google Scholar 

  • Benolken, R.M. andS.L. Jacobsen. 1970. Response properties of a sensory hair excised from Venus's flytrap. J. Gen. Physiol.86: 64–82.

    Article  Google Scholar 

  • Bentrup, F.W. 1979. Reception and transduction of electrical and mechanical stimuli.In W. Haupt and M.E. Feinleib, ed., Encyclopedia of Plant Physiology, vol. 7, Physiology of Movements, pp. 42–70. Springer-Verlag, Berlin.

    Google Scholar 

  • Biswas, S. andD.M. Bose. 1972. An ATPase in sensitive plantMimosa pudica. I. Purification and characterization. Arch. Biochem. Biophys.148: 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, N.A. andW.W. Thomson. 1977a. Effects of lanthanum and ethylenediaminetetraacetate on leaf movements ofMimosa. Plant Physiol.60: 635–639.

    PubMed  CAS  Google Scholar 

  • andW.W. Thomson. 1977b. Multivacuolate motor cells inMimosa pudica L. Ann. Bet.41: 1361–1362.

    Google Scholar 

  • ,K.M. Stika andG.H. Morrison. 1979. Calcium and potassium in the motor organ of the sensitive plant: localization by ion microscopy. Science204: 185–187.

    PubMed  Google Scholar 

  • Eckert, R. 1965. Bioelectric control of bioluminescence in the dinoflagellateNoctiluca. Science147: 1140–1145.

    PubMed  Google Scholar 

  • andW. Sibaoka. 1967. Bioelectric regulation of tentacle movement in a dinoflagellate. J. Exp Biol.47: 433–446.

    PubMed  CAS  Google Scholar 

  • Esac, K. 1973. Comparative structure of companion cells and phloem parenchyma cells inMimosa pudica L. Ann. Bot.37: 625–632.

    Google Scholar 

  • Findlay, G.P. 1984. Nastic movements.In M.B. Wilkins, ed., Advanced Plant Physiology, pp. 186–200. Pitman, London.

    Google Scholar 

  • Fleurat-Lessard, P. 1979. Cytophysiologie et sensorio-motricité de la sensitiveMimosa pudica L. Thèse de Doctorat d'Etat de l'université de Poitiers.

  • 1988. Structural and ultrastructural features of cortical cells in motor organs of sensitive plants. Biol. Rev.63: 1–22.

    Article  Google Scholar 

  • andJ.-L. Bonnemain. 1978. Structural and ultrastructural characteristics of the vascular apparatus of the sensitive plant (Mimosa pudica L.). Proteplasma94: 127–143.

    Article  Google Scholar 

  • andB. Millet. 1984. Ultrastructural features of cortical parenchyma cells (‘motor cells’) in stamen filaments ofBerberis canadensis Mill and tertiary pulvini ofMimosa pudica L. J. Exp. Bot.35: 1332–1341.

    Google Scholar 

  • andG. Roblin. 1982. Comparative histocytology of the petiole and the main pulvinus inMimosa pudica L. Ann. Bot.50: 83–92.

    Google Scholar 

  • ,G. Roblin, andJ. Bonmort. 1987. Are microtubules and microfibrils ofMimosa motor cells involved in leaf motility?In E. Wagner et al., ed., The Cell Surface in Signal Transduction. pp. 181–188. Springer-Verlag, Berlin.

    Google Scholar 

  • ,G. Roblin, J. Bonmort andC. Besse. 1988. Effects of colchicine, vinblastine, cytochalasin B and phalloidin on the seismonastic movement ofMimosa pudica leaf and on motor cell ultrastructure. J. Exp. Bot.39: 209–221.

    CAS  Google Scholar 

  • Ghosh, G., J. Mukherzee, S. Biswas andA. Pal. 1987. Actin-like protein fromMimosa pudica L. Ind. J. Biochem. Biophys.24: 336 339.

    Google Scholar 

  • Hodick, D. andA. Silvers. 1986. The influence of Ca2+, on the action potential in mesophyll cells ofDionaea muscipula Ellis. Protoplasma133: 83–84.

    Article  Google Scholar 

  • andA. Silvers. 1988. The action potential ofDionaea muscipula Ellis. Planta174: 8–18.

    Article  CAS  Google Scholar 

  • andA. Silvers. 1989. On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta179: 32–42.

    Article  Google Scholar 

  • Ijima, W. 1981. Insect-trapping movements inAldrovanda vesiculosa. Plants and Nature15: 19–24. (In Japanese).

    Google Scholar 

  • . 1987. Voltage-dependent K channels in protoplasts of trap-lobe cells ofDionaea muscipula. J. Membrane Biol.100: 73–81.

    Article  Google Scholar 

  • . 1981. Action potential in the trap-lobes ofAldrovanda vesiculosa. Plant Cell Physiol.22: 1595–1601.-

    Google Scholar 

  • . 1982. Propagation of action potential over the trap-lobes ofAldrovanda vesiculosa. Plant Cell Physiol.23: 679–688.

    Google Scholar 

  • . 1983. Movements of K+ during shutting and opening of the trap-lobes inAldrovanda vesiculosa. Plant Cell Physiol.24: 51–60.

    Google Scholar 

  • . 1985. Membrane potentials in excitable cells ofAldrovanda vesiculosa trap-lobes. Plant Cell Physiol.26: 1–13.

    Google Scholar 

  • — and —. 1991. Action potential and trap closure inAldrovanda vesiculosa: a possible mechanism of ATP-dependent closure. Manuscript in preparation.

  • Ishikawa, H., T. Tamiya, W. Tsuchiya andJ.J. Matsumoto. 1984. A novel ATP-ADPase fromMimosa pulvinus. Comp. Biochem. Physiol.78B: 59–61.

    CAS  Google Scholar 

  • Jacobson, S.L. 1965. Receptor response in Venus's fly-trap. J. Gen. Physiol.49: 117–129.

    Article  PubMed  CAS  Google Scholar 

  • 1974. Effect of ionic environment on the response of the sensory hair of Venus's-flytrap. Can. J. Bot.52:1293–1302.

    CAS  Google Scholar 

  • Jaffe, M.J. 1973. The role of ATP in mechanically stimulated rapid closure of the Venus's-flytrap. Plant Physiol.51: 17–18.

    PubMed  CAS  Google Scholar 

  • Jones, C. andJ.M. Wilson. 1982. The effects of temperature on action potentials in the chill sensitive seismonastic plantBiophytum sensitivum. J. Exp. Bot.33: 313–320.

    Google Scholar 

  • Kumon, K. andS. Suda. 1984. Ionic fluxes from pulvinar cells during the rapid movement ofMimosa pudica L. Plant Cell Physiol.25: 975–979.

    CAS  Google Scholar 

  • . 1985. Changes in extracellular pH of the motor cells ofMimosa pudica L. during movement. Plant Cell Physiol.26: 375–377.

    CAS  Google Scholar 

  • . 1984. Ion effiux from pulvinar cells during slow downward movement of the petiole ofMimosa pudica L. induced by photostimulation. J. Plant Physiol.115: 439–443.

    CAS  Google Scholar 

  • . 1984. IAA-induced hyperpolarization of the membrane potential in isolated cells fromMimosa pudica pulvinus. Bot. Mag. Tokyo97: 483–487.

    Article  CAS  Google Scholar 

  • Lea, H.W. 1976. A muscle contracting substance from a plant's closing fly-trap. Planta129: 39–41.

    Article  CAS  Google Scholar 

  • Lyubimova, M.N., N.S. Demianovskaia, I.B. Fedorovich andI.V. Itomlenskite. 1965. Functional relation between ATP and leaf movement inMimosa pudica. Dokl. Akad. Nauk SSSR161: 964–967. (In Russian).

    CAS  Google Scholar 

  • ,S.A. Burnasheva, F.S. Fain, N.A. Mitina andY.M. Poprykina. 1978. Study of adenosine triphosphatase fromMimosa pudica. Biokhimiya43: 748–760. (In Russian).

    Google Scholar 

  • Moritô, A. 1971. Fine structures of the motor cells in the main pulvinus ofMimosa pudiza L. Sci. Rep. Fukushima Univ.21: 17–22. (In Japanese).

    Google Scholar 

  • Mukherjee, J. andS. Biswas. 1982. Tubulin fromMimosa pudica and its involvement in leaf movement. Phytochemistry21: 1881–1884.

    Article  CAS  Google Scholar 

  • Nawata, W. andT. Sibaoka. 1979. Coupling between action potential and bioluminescence inNoctiluca: effects of inorganic ions and pH in vacuolar sap. J. Comp. Physiol. A134: 137–149.

    Article  CAS  Google Scholar 

  • Oami, K., T. Sibaoka andY. Naitoh. 1988. Tentacle regulating potentials inNoctiluca miliaris: their generation sites and ionic mechanisms. J. Comp. Physiol. A152: 179–185.

    Article  Google Scholar 

  • Oda, K. andT. Abe. 1972. Action potential and rapid movement in the main pulvinus ofMimosa pudica. Bot. Mag. Tokyo85: 135–145.

    Article  Google Scholar 

  • Otsiogo-Oyabi, H. andG. Roblin. 1985. Changes in membrane potential related to glyeine uptake in the motor cell of the pulvinus ofMimosa pudica. J. Plant Physiol.119: 19–24.

    CAS  Google Scholar 

  • Pickard, G.G. 1973. Action potentials in higher plants. Bot. Rev.39: 172–201.

    Google Scholar 

  • Ragetli, H.W.J., M. Weintraub andE. Lo. 1972. Characteristics of Drosera tentacles. I. Anatomical and cytological detail. Can. J. Bot.50: 159–168.

    Google Scholar 

  • Roblin, G. 1979.Mimosa pudica: a model for the study of the excitability in plants. Biol. Rev.54: 135–153.

    Google Scholar 

  • . 1983. Distribution of potassium, chloride and calcium and capacity of hydrogen ion excretion in various parts of theMimosa pudica plant. Ann. Bot.52: 763–768.

    CAS  Google Scholar 

  • . 1987. Redistribution of potassium, chloride and calcium during the gravitropically induced movement ofMimosa pudica pulvinus. Planta170: 242–248.

    Article  CAS  Google Scholar 

  • Saeedi, S., G. Roblin andE. Auger. 1988. Effects of 2, 3, 5-triiodobenzoic acid on seismonastic reaction, respiration, proton fluxes and membrane potential of motor cells inMimosa pudica pulvinus. Plant Physiol. Biochem.20: 145–150.

    Google Scholar 

  • Samejima, M. andW. Sibaoka, 1980. Changes in the extraeellular ion concentration in the main pulvinus ofMimosa pudica during rapid movement and recovery. Plant Cell Physiol.21: 467–479.

    CAS  Google Scholar 

  • . 1982. Membrane potentials and resistances of excitable cells in the petiole and main pulvinus ofMimosa pudica. Plant Cell Physiol.23: 459–465.

    CAS  Google Scholar 

  • . 1983. Identification of the excitable cells in the petiole ofMimosa pudica by intracellular injection of Procion Yellow. Plant Cell Physiol.24: 33–39.

    Google Scholar 

  • Satter, R.L. 1979. Leaf movements and tendril curling.In W. Haupt and M.E. Feinleib, ed., Encyclopedia of Plant Physiology, vol. 7, Physiology of Movements, pp. 442–484. Springer-Verlag, Berlin.

    Google Scholar 

  • Sibaoka, T. 1951. Electrical potential changes in the main pulvinus and leaf movement ofMimosa pudica. Sci. Rep. Tohoku Univ. (Biol.)19: 133–139.

    Google Scholar 

  • . 1966. Action potentials in plant organs. Symp. Soc. Exp. Biol.20: 49–74.

    PubMed  CAS  Google Scholar 

  • . 1969. Physiology of rapid movements in higher plants. Annu. Rev. Plant Physiol.20: 165–184.

    Article  CAS  Google Scholar 

  • . 1973. Transmission of action potentials inBiophytum. Bot. Mag. Tokyo86: 51–61.

    Article  Google Scholar 

  • . 1980. Action potentials and rapid plant movements.In F. Skoog, ed., Plant Growth Substances 1979, pp. 462–469. Springer-Verlag, Berlin.

    Google Scholar 

  • . 1981. Irritable Plants. Univ. Tokyo Press, Tokyo (In Japanese).

    Google Scholar 

  • 1956. Shock stoppage of the protoplasmic streaming in relation to the action potential inChara. Sci. Rep. Tohoku Univ. (Biol.)22: 157–166.

    Google Scholar 

  • . 1981. Electrotonic coupling between adjacent internodal cells ofChara braunii: transmission of action potentials beyond the node. Plant Cell Physiol.22: 397–411.

    Google Scholar 

  • Simons, P.J. 1981. The role of electricity in plant movements. New Phytol.87: 11–37.

    Article  CAS  Google Scholar 

  • Spanswlok, R.M. 1972. Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta102: 215–227.

    Article  Google Scholar 

  • . 1967. Plasmodesmata in NiteUa translucens: structure and electrical resistance. J. Cell Sci.2: 451–464.

    Google Scholar 

  • Stoeckel, H. andR. Pfirsch. 1975. Modification temporaire des relations fonetionelles entre pulvinus primaire et petiole chez feuilles jeunes deMimosa pudica L. Z. Pflanzenphysiol.76: 1–13.

    Google Scholar 

  • Stuhlman, O., Jr. 1948. A physical analysis of the opening and closing movements of the lobes of Venus' fly-trap. Bull. Torrey Bot. Club75: 22–44.

    Article  Google Scholar 

  • Tamiya, T., Miyazaki, T., Ishikawa, H., Iriguchi, N., Maki, T., Matsumoto, J.J. andTsuchiya, T.. 1988. Movement of water in conjunction with plant movement visualized by NMR imaging. J. Biochem.104: 5–8.

    PubMed  CAS  Google Scholar 

  • Toriyama, H. 1957. Observational and experimental studies of sensitive plants. VIII. The migration of colloidal substance in the primary pulvinus. Cytologia22: 184–192.

    Google Scholar 

  • 1963. Histochemical detection of ATPase activity in motor tissue ofMimosa pudica. Bot. Mag. Tokyo76: 79–80.

    CAS  Google Scholar 

  • . 1972. Migration of calcium and its role in the regulation of seismonasty in the motor cell ofMimosa pudica L. Plant Physiol.49: 72–81.

    Article  PubMed  CAS  Google Scholar 

  • . 1971. The recovery process of the tannin vacuole in the motor cell ofMimosa pudica L. Cytologia36: 690–697.

    CAS  Google Scholar 

  • . 1971. On the contents of the central vacuole in theMimosa motor cell. Cytologia36: 359–375.

    Google Scholar 

  • Vanden Driessche, T. 1978. The molecular mechanism ofMimosa leaf seismonastie movement. A re-evaluation. Arch. Biol. (Bruxelles)89: 435–449.

    CAS  Google Scholar 

  • Watanabe, S. 1970. Electron microscopic studies of Mimosa pulvinus cells before and after movement. Artes Liberales, Iwate Univ.7: 49–51.

    Google Scholar 

  • 1971. Ouabain and IAA effects onMimosa pulvinus. Artes Liberales, Iwate Univ.8: 75–80.

    Google Scholar 

  • Williams, M.E. andH.N. Mozingo. 1971. The fine structure of the trigger hair in Venus's flytrap. Amer. J. Bot.58: 532–539.

    Article  Google Scholar 

  • Williams, S.E. 1976. Comparative sensory physiology of the Droseraceae—The evolution of a plant sensory system. Proc. Amer. Philos. Soc.120: 187–204.

    Google Scholar 

  • . 1982. Leaf closure in the Venus flytrap: an acid growth response. Science218: 1120–1122.

    CAS  PubMed  Google Scholar 

  • . 1972a. Receptor potentials and action potentials inDrosera tentacles. Planta103: 193–221.

    Article  Google Scholar 

  • and. 1972b. Properties of action potentials inDrosera tentacles. Planta103: 222–240.

    Article  Google Scholar 

  • and. 1974. Connections and barriers between cells ofDrosera tentacles in relation to their electrophysiology. Planta116: 1–16.

    Article  Google Scholar 

  • and. 1980. The role of action potentials in the control of capture movements ofDrosera andDionaea.In F. Skoog, ed., Plant Growth Substances 1979, pp. 470–480. Springer-Verlag, Berlin.

    Google Scholar 

  • . 1976. Propagation of the neuroid action potential of the carnivorous plantDrosera. J. Comp. Physiol.108: 211–223.

    Article  Google Scholar 

  • Zhang, P., T. Mimura andM. Tazawa. 1990. Jumping transmission of action potential between separately placed internodal cells ofChara corallina. Plant Cell Physiol.31: 299–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibaoka, T. Rapid plant movements triggered by action potentials. Bot Mag Tokyo 104, 73–95 (1991). https://doi.org/10.1007/BF02493405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02493405

Keywords

Navigation