Skip to main content

Transfer of Radionuclides to Plants: Influence on the Speciation of Radionuclides in Soil

  • Chapter
  • First Online:
Radionuclide Contamination and Remediation Through Plants

Abstract

The quantification of the soil-to-plant transfer by means of transfer factor or concentration ratios values presents high range of variation, about 4–5 orders of magnitude for radiocesium. This range can be partially explained by the different association of radionuclides to soil particles, which can be assessed by speciation procedures. The fact that there are a lot of speciation procedures in the literature may, in some occasions, make its interpretation difficult. The source of radionuclides is a major factor influencing the speciation. The anthropogenic radionuclides associated with fuel particles present usually low mobility, although they can be weathered with time. Regarding the radionuclides released in the global fallout, the 90Sr is the most bioavailable. Plutonium is usually associated with organic matter. The mobility and bioavailability of radiocesium depends on the soil clay content, and is also time dependent. The naturally occurring radionuclides in soil are mainly associated with fractions strongly fixed, because they mainly occur in minerals forming part of soil particles. The speciation of soil can also be modified by agricultural procedures, such as the addition of fertilizers or phosphogypsum. The fertilization can be used to reduce the soil-to-plant transfer of radiocesium and radiostrontium by supplying stable elements, potassium, and calcium, respectively, so that their content in soil solution decreased. The phosphate-based fertilizers have also naturally occurring radionuclides, which can be transferred to plants. Phosphogypsum, which can contain high levels of radium, is used as soil amendment. However, its radium content is mainly associated with immobile fractions, and its transfer to plants is of the same order of magnitude than without phosphogypsum amendment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexakhin RM, Krouglov SV (2001) Soil as the main compartment for radioactive substances in terrestrial ecosystems. In: Bréchignac F, Howard BJ (eds) Radioactive pollutants. Impact on the environment. EDP Sciences, Les Ulis, France

    Google Scholar 

  • Agapkina GI, Tikhomirov FA (1994) Radionuclides in the liquid phase of the forest soils at the Chernobyl accident zone. Sci Total Environ 157:267–273

    Article  CAS  PubMed  Google Scholar 

  • Agapkina GI, Tikhomorov FA, Shcheglov AI (1995) Association of Chernobyl-derived 239+240Pu, 241Am, 90Sr and 137Cs with organic matter in the soil solution. J Environ Radioactiv 29:257–269

    Article  CAS  Google Scholar 

  • Amano H, Matsunaga T, Nagao S, Hanzawa Y, Watanabe M, Ueno T, Onuma Y (1999) The transfer capability of long-lived Chernobyl radionuclides from surface soil to river water in dissolved forms. J Org Chem 30:437–442

    CAS  Google Scholar 

  • Badruzzaman M, Pinzon J, Oppenhaimer J, Jacabgeli JG (2012) Sources of nutrients impacting surface waters in Florida: a review. J Environ Manag 109:80–92

    Article  CAS  Google Scholar 

  • Baeza A, Paniagua JM, Rufo M, Sterling A, Barandica J (1999) Radiocesium and radiostrontium uptake by turnips and broad beans via leaf and root absorption. Appli Radiat Isot 50:467–474

    Article  CAS  Google Scholar 

  • Baeza A, Paniagua J, Rufo M, Guillén J, Sterling A (2001) Seasonal variations in radionuclide transfer in a mediterranean grazing-land ecosystem. J Environ Radioactiv 55:283–302

    Article  CAS  Google Scholar 

  • Baeza A, Guillén J, Espinosa A, Aragón A, Gutiérrez J (2004) A study of the bioavailability of 90Sr, 137Cs, and 239+240Pu in soils at two locations of Spain affected by different radionuclide contamination events. Radioprotection 40(S1):S61–S65

    Google Scholar 

  • Baeza A, Guillén J, Bernedo JM (2005) Soil-fungi transfer coefficients: importance of the location of mycelium in the soil and of the differential availability of radionuclides in soil fractions. J Environ Radioactiv 81:89–106

    Article  CAS  Google Scholar 

  • Baeza A, Guillén J (2006) Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Appli Radiat Isot 64:1020–1026

    Article  CAS  Google Scholar 

  • Baeza A, Guillén J, Mietelski JW, Gaca P (2006) Soil-to-fungi transfer of 90Sr, 239+240Pu, and 241Am. Radiochim Acta 94:75–80

    Article  CAS  Google Scholar 

  • Baeza A, Corbacho JA, Guillen J, Salas A, Mora JC (2011) Analysis of the different source terms of natural radionuclides in a river affected by naturally occurring radioactive materials (NORM) activities. Chemosphere 83:933–940

    Article  CAS  PubMed  Google Scholar 

  • Baeza A, Salas A, Guillén J, Muñoz-Serrano A (2014) Association of naturally occurring radionuclides in sludges from drinking water treatment plants previously optimized for their removal. Chemosphere 97:108–114

    Article  CAS  PubMed  Google Scholar 

  • Barišić D, Lulic S, Miletic P (1992) Radium and their uranium in phosphate fertilizers impact on the radioactivity of waters. Wat Res 26:607–611

    Article  Google Scholar 

  • Barnett CL, Beresford NA, Walker LA, Baxter M, Wells C, Copplestone D (2013) Transfer parameters for ICRP reference animals and plants collected from a forest ecosystem. Radiat Environ Biophys (on-line publication)

    Google Scholar 

  • Blanco P, Vera Tomé F, Lozano JC (2004) Sequential extraction for radionuclide fractionation in soil samples: a comparative study. Appli Radiat Isot 61:350–354

    Google Scholar 

  • Bunzl K, Schimmack W, Belli M, Riccardi M (1997) Sequential extraction of fallout radiocesium from the soil: small scale and large scale spatial variability. J Radioanal Nucl Chem 226:47–53

    Article  CAS  Google Scholar 

  • Bunzl K, Albers BP, Shimmack W, Rissanen K, Suomela M, Puhakainen M (1999) Soil to plant uptake of fallout 137Cs by plants from boreal areas polluted by industrial emissions from smelters. Sci Total Environ 234:213–221

    Article  CAS  PubMed  Google Scholar 

  • Burnett WC, Schultz MK, Hull CD (1996) Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate. J Environ Radioactiv 32:33–51

    Article  CAS  Google Scholar 

  • Camps M, Rigol A, Hillier S, Vidal M, Rauret G (2004) Quantitative assessment of the effects of agricultural practices designed to reduce 137Cs and 90Sr soil–plant transfer in meadows. Sci Total Environ 332:23–38

    Article  CAS  PubMed  Google Scholar 

  • CEE (1997) Directive de la Comisión concernant de rapprochement des législations des États membres relatives aux méthodes d’échantillonnage et d’analyse des engrais du, nº L213. (In French) 22 Aug 1977

    Google Scholar 

  • Chandrajith R, Seneviratna S, Wickramaarachchi K, Attanayake T, Aturaliya TNC, Dissanayake CB (2010) Natural radionuclides and trace elements in rice field soils in relation to fertilizer application: study of a chronic kidney disease area in Sri Lanka. Environ Earth Sci 60:193–201

    Article  CAS  Google Scholar 

  • Chauhan P, Chauhan RP, Gupta M (2013) Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchem J 106:73–78

    Article  CAS  Google Scholar 

  • Cheshire MV, Shand C (1991) Translocation and plant availability of radio cesium in an organic soil. Plant Soil 134:287–296

    Article  CAS  Google Scholar 

  • Cook GT, Baxter MS, Duncan HJ, Toole J, Malcolmson R (1984) Geochemical association of plutonium in the Caithness environment. Nucl Inst Nucl Meth Phys Res 223:517–522

    Article  CAS  Google Scholar 

  • Copplestone D, Johnson MS, Jones SR (2001) Behaviour and transport of radionuclides in soil and vegetation of a sand dune ecosystem. J Environ Radioactiv 555:93–108

    Article  Google Scholar 

  • Drissner J, Bürmann W, Enslin F, Heider R, Klemt E, Miller R (1998) Availability of cesium radionuclides to plants—classification of soils and role of mycorrhiza. J Environ Radioactiv 41:19–32

    Article  CAS  Google Scholar 

  • Fawaris BH, Johanson JK (1995) Fractionation of caesium (137Cs) in a coniferous forest soil in central Sweden. Sci Total Environ 170:221–228

    Article  CAS  Google Scholar 

  • Fesenko SV, Soukhova NV, Sanzharova NI, Avila R, Spiridonov SI, Klein D, Badot PM (2001) 137Cs availability for soil to understorey transfer in different types of forest ecosystems. Sci Total Environ 269:87–103

    Article  CAS  PubMed  Google Scholar 

  • Forsberg S, Rosén K, Fernandez V, Juhan H (2000) Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions. J Environ Radioactiv 50:235–252

    Article  CAS  Google Scholar 

  • Forsberg S, Rosén K, Bréchignac F (2001) Chemical availability of 137Cs and 90Sr in undisturbed lysimeter soils maintained under controlled and close-to-real conditions. J Environ Radioactiv 54:253–265

    Article  CAS  Google Scholar 

  • Fuhrmann M, Lasat M, Ebbs S, Cornish J, Kochian L (2003) Uptake and release of Cesium-137 by five plants species as influenced by soil amendments in field experiments. J Environ Qual 32:2272–2279

    Article  CAS  PubMed  Google Scholar 

  • Guillén J, Baeza A, Ontalba MA, Míguez MP (2009) 210Pb and stable lead content in fungi: its transfer from soil. Sci Total Environ 407:4320–4326

    Article  PubMed  Google Scholar 

  • Haridasan PP, Maniyan CG, Pillai PMB, Khan AH (2002) Dissolution characteristics of 226Ra from phosphogypsum. J Environ Radioactiv 62:287–294

    Article  CAS  Google Scholar 

  • Hull CD, Burnett WC (1996) Radiochemistry of Florida phosphogypsum. J Environ Radioactiv 32:213–238

    Article  CAS  Google Scholar 

  • IAEA (2003) Extent of environmental contamination by naturally occurring radioactive material (NORM) and technological options for mitigation. IAEA technical reports series nº 419, Vienna

    Google Scholar 

  • IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. International Atomic Energy Agency, Vienna

    Google Scholar 

  • ICRP (2009) Environmental protection: transfer parameters for reference animals and plants. ICRP Publication 114, Ann. ICRP 39(6)

    Google Scholar 

  • Jacob P, Fesenko S, Bogdevitch I, Kashparv V, Sanzharova N, Grebenshikova N, Isamov N, Lazarev N, Panov A, Ulanovky A, Zhuchenko Y, Zhurba M (2009) Rural areas affected by the Chernobyl accident: radiation exposure and remediation strategies. Sci Total Environ 408:14–25

    Article  CAS  PubMed  Google Scholar 

  • Jouve A, Lejeune M, Rey J (1999) A new method for determining the bioavailability of radionuclides in the soil solution. J Environ Radioactiv 43:277–289

    Article  CAS  Google Scholar 

  • Kagan LM, Kadatsky VB (1996) Depth migration of Chernobyl originated 137Cs and 90Sr in soils of Belarus. J Environ Radioactiv 33:27–39

    Article  CAS  Google Scholar 

  • Kaunisto S, Aro L, Rantavaara A (2002) Effect of fertilisation on the potassium and radiocaesium distribution in tree stands (Pinus sylvestris L.) and peat on a pine mire. Environ Pollut 117:111–119

    Article  CAS  PubMed  Google Scholar 

  • Kennedy VH, Sanchez AL, Oughton DH, Rowland AP (1997) Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122:89R–100R

    Article  CAS  Google Scholar 

  • Komosa A (2002) Study on geochemical association of plutonium in soil using sequential extraction procedure. J Radioanal Nucl Chem 252:121–128

    Article  CAS  Google Scholar 

  • Kononova MM (1982) Materia orgánica del suelo. Ediciones Oikos-Tau, Barcelona. (In Spanish)

    Google Scholar 

  • Korobova E, Ermakov A, Linnik V (1998) 137Cs and 90Sr mobility in soils and transfer in soil-plant systems in the Novozybkov district affected by the Chernobyl accident. Appl Geochem 13:803–814

    Article  CAS  Google Scholar 

  • Krouglov SV, Kurinov AD, Alexakhin RM (1998) Chemical fractionation of 90Sr, 106Ru, 137Cs and 144Ce in Chernobyl-contaminated soils: an evolution in the course of time. J Environ Radioacitiv 38:59–76

    Article  CAS  Google Scholar 

  • Lee MH, Lee CW (2000) Association of fallout-derived 137Cs, 90Sr and 239,240Pu with natural organic substances in soils. J Environ Radioactiv 47:253–262

    Article  CAS  Google Scholar 

  • Lembrechts J (1993) A review of literature on the effectiveness of chemical amendments in reducing the soil-to-plant transfer of radiostrontium and radiocesium. Sci Total Environ 137:81–98

    Article  CAS  Google Scholar 

  • Mustonen R (1985) Radioactivity of fertilizers in Finland. Sci Total Environ 45:127–134

    Article  CAS  Google Scholar 

  • Nisbet AF, Salbu B, Shaw S (1993a) Association of radionuclides with different molecular size fractions in soil solution: Implications for plant uptake. J Environ Radioactiv 18:71–84

    Article  CAS  Google Scholar 

  • Nisbet AF, Konoplev AV, Shaw G, Lembrechts JF, Merckx R, Smolders E, Vandecasteele CM, Lönsjö H, Carin F, Burton O (1993b) Application of fertilisers and ameliorants to reduce soil to plant transfer of radiocesium and radiostrontium in the medium to long term—a summary. Sci Total Environ 137:173–182

    Article  CAS  Google Scholar 

  • Nisbet AF, Shaw S (1994) Summary of a 5-year lysimeter study on the time- dependent transfer of 137Cs, 90Sr, 239, 240Pu and 241Am to crops from three contrasting soil types: 1. transfer to the edible portion. J Environ Radioact 23:1–17

    Article  CAS  Google Scholar 

  • Pavlotskaya FI (1974) Migration of radioactive products from global fallout in soils. Moskow, Atomizdat. (In Russian)

    Google Scholar 

  • Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M (2006) The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioactiv 89:188–198

    Article  CAS  Google Scholar 

  • Righi S, Lucialli P, Bruzzi L (2005) Health and environmental impacts of a fertilizer plant Part I: assessment of radioactive pollution. J Environ Radioactiv 82:167–182

    Article  CAS  Google Scholar 

  • Rigol A, Vidal M, Rauret G (2002) An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake. J Environ Radioactiv 58:191–216

    Article  CAS  Google Scholar 

  • Riise G, Bjørnstad HE, Lien HN, Oughton DH, Salbu B (1990) A study on radionuclide association with soil components using a sequential extraction procedure. J Radioanal Nucl Chem 142:531–538

    Article  CAS  Google Scholar 

  • Robison WL, Brown PH, Stone EL, Hamilton TF, Conrado CL, Kehl S (2009) Distribution and ratios of 137Cs and K in control and K-treated coconut trees at Bikini Island where nuclear test fallout occurred: effects and implications. J Environ Radioactiv 100:76–83

    Article  CAS  Google Scholar 

  • Rosén K, Vinichuk M, Nikolova I, Johanson K (2011) Long-term effects of single potassium fertilization on 137Cs levels in plants and fungi in a boreal forest ecosystem. J Environ Radioactiv 102:178–184

    Article  Google Scholar 

  • Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38

    Article  CAS  Google Scholar 

  • Saueia CH, Mazzilli BP, Fávaro DIT (2005) Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil. J Radioanal Nucl Chem 264:445–448

    Article  Google Scholar 

  • Shaw G (1993) Blockade by fertilizers of caesium and strontium uptake into crops: effects on the root uptake process. Sci Total Environ 137:119–133

    Article  CAS  Google Scholar 

  • Schuller P, Bunzl K, Voigt G, Krarup A, Castillo A (2005) Seasonal variation of the radiocaesium transfer soil-to-swiss chard (Beta vulgaris var. cicla L.) in allophanic soils from the lake region. Chile J Environ Radioactiv 78:21–33

    Article  CAS  Google Scholar 

  • Schultz MK, Inn KGW, Lin ZC, Burnett WC, Smith G, Biegalski SR, Filliben J (1998) Identification of radionuclide partitioning in soils and sediments: determination of optimum conditions for the exchangeable fraction of the NIST standard sequential extraction protocol. Appl Radiat Isot 49:1289–1293

    Article  CAS  Google Scholar 

  • Stauton S, Dumat C, Zsolnay A (2002) Possible role of organic matter in radiocesium adsorption in soils. J Environ Radioactiv 58:163–173

    Article  Google Scholar 

  • Strandberg M (1994) Radiocesium in a danish pine forest ecosystem. Sci Total Environ 157:125–132

    Article  CAS  Google Scholar 

  • Szabo G, Wedgwood AJ, Bulman RA (1991) Comparison and development of new extraction procedures for 239Pu, Ca, Fe and Cu organic complexes in soil. J Enrivon Radioactiv 13:181–189

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Visón M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 57:844–851

    Article  Google Scholar 

  • Tsukada H, Nakamura Y (1999) Transfer of 137Cs and stable Cs from soil to potato in agricultural fields. Sci Total Environ 228:111–129

    Article  CAS  PubMed  Google Scholar 

  • UNSCEAR (2000) United Nations scientific committee on the effects of atomic radiation. UNSCEAR 2000 report to the general assembly, with scientific annexes, New York

    Google Scholar 

  • Vidal M, Camps M, Grebenshikova N, Sanzharova N, Ivanov Y, Vandecasteele C, Shand C, Rigol A, Firsakova S, Fesenko S, Levchuk S, Cheshire M, Sauras T, Rauret G (2001) Soil- and plant-based countermeasures to reduce 137Cs and 90Sr uptake by grasses in natural meadows: the REDUP project. J Environ Radioactiv 56:139–156

    Article  CAS  Google Scholar 

  • Vinichuk MM, Johanson KJ, Rosén K, Nilsson I (2005) Role of the fungal mycelium in the retention of radiocaesium in forest soil. J Environ Radioactiv 78:77–92

    Article  CAS  Google Scholar 

  • Wang J, Wang C, Huang C, Lin Y (1998) Transfer factors of 90Sr and 137CS from paddy soil to the rice plant in Taiwan. J Environ Radioactiv 39:23–34

    Article  CAS  Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Shaw G, Nisbet AF, Wilkins BT (2000) Effect of potassium (K) supply on the uptake of 137Cs by spring wheat (Triticum aestivum cv. Tonic): A lysimeter study. Radiat Environ Biophys 39:283–290

    Article  CAS  PubMed  Google Scholar 

  • Zielinski RA, Asher-Bolinder S, Meier AL, Johnson CA, Szabo BJ (1997) Natural or fertilizer-derived uranium in irrigation drainage: a case study in southwestern Colorado, USA. Appli Geochem 12:9–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by the financing provided by the Spanish Ministry of Science and Innovation to the project nº FIS2011-29788. We are also grateful to the Autonomous Government of Extremadura (Junta de Extremadura) for financial support granted to the LARUEX research group (FQM001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guillén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guillén, J., Baeza, A., Salas, A., Muñoz-Muñoz, J.G., Muñoz-Serrano, A. (2014). Transfer of Radionuclides to Plants: Influence on the Speciation of Radionuclides in Soil. In: Gupta, D., Walther, C. (eds) Radionuclide Contamination and Remediation Through Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07665-2_5

Download citation

Publish with us

Policies and ethics