Skip to main content
Log in

Speciation of naturally occurring radionuclides in Mediterranean soils: bioavailabilty assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Knowledge of soil-to-plant transfer processes is a key element that can have a significant health impact. Much effort has been taken to characterize the speciation of anthropogenic radionuclides released into the environment. However, the information about naturally occurring radionuclides is scarce. This work evaluate the potential risks of transference, that is, the bioavailability of the 234,238U, 226Ra, 228,230,232Th, and 210Po in three different soils collected in Mediterranean ecosystems. Chemical speciation of these radionuclides was carried out according to two different methods, Pavlotskaya and a modification of Tessier’s protocol. Most of these radionuclides were associated to fractions strongly bound to soil particles and not able to be transferred. Increasing concentrations of U and Th extracted with increasing volume of NH4OAc 1 M were observed, until it reached saturation. Readily bioavailable fraction in both methods (either exchangeable or water soluble + exchangeable) decreased in the following order: 226Ra > 234,238 U > 228,230,232Th > 210Po. It was found that < 3% of the natural radionuclide concentration in soil are readily bioavailable for plant uptake in this region of Spain, and the resulting human health risk is negligible from natural radionuclide ingestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amano H, Matsunaga T, Nagao S, Hanzawa Y, Watanabe M, Ueno T, Onuma Y (1999) The transfer capability of long-lived Chernobyl radionuclides from surface soil to river water in dissolved forms. Org Chem 30:437–442

    CAS  Google Scholar 

  • Baeza A, del Rio M, Miró C, Paniagua J (1992) Natural radioactivity in soils of the province of Cáceres (Spain). Radiat Prot Dosim 45(1-4):261–263. https://doi.org/10.1093/rpd/45.1-4.261

    Article  CAS  Google Scholar 

  • Baeza A, del Río LM, Jiménez A (1998) Procedure for simultaneous determination of 223,224,226,228Ra by alpha and gamma spectrometry. Radiochim Acta 83:53–60

    Article  CAS  Google Scholar 

  • Blanco P, Vera Tomé F, Lozano JC (2004) Sequential extraction for radionuclide fractionation in soil samples: a comparative study. Appl Radiat Isot 61(2-3):345–350. https://doi.org/10.1016/j.apradiso.2004.03.006

    Article  CAS  Google Scholar 

  • Bolívar JP, García-Tenorio R, Mas JL, Vaca F (2002) Radioactive impact in sediments from an estuarine system affected by industrial wastes releases. Environ Int 27(8):639–645. https://doi.org/10.1016/S0160-4120(01)00123-4

    Article  Google Scholar 

  • CA, Codex Alimentarius (1995) Codex General Standards for Contaminants and Toxins in Food and Feed (CODEX STAN 193-1995)

  • CA, Codex Alimentarius (2011) Fact Sheet on Codex Guideline Levels for Radionulices in Foods Contaminated Following a Nuclear or Radiological Emergency- Prepared by Codex Secretariat, 2 may 2011

  • CSN, Consejo de Seguridad Nuclear (2000). Proyecto MARNA. Mapa de radiación gamma natural. Colecciçon Informes Técnicos 5.2000, Madrid, (in Spanish)

  • Greeman DJ, Rose AW, Washington JW, Dobos RR, Ciolkosz EJ (1999) Geochemistry of radium in soils of the Eastern United States. Appl Geochem 14(3):365–385. https://doi.org/10.1016/S0883-2927(98)00059-6

    Article  CAS  Google Scholar 

  • Guillén J, Baeza A, Salas A (2012) Speciation of radionuclides in terrestrial and aquatic ecosystems. In: Guillén J (ed) . Radionuclides: sources, properties and hazards. Nova Science Publishers, Inc, New York, pp 95–112

    Google Scholar 

  • IAEA (2010) Handbook of parameter for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series No. 472. International Atomic Energy Agency, Vienna

  • ICRP (2012) Compendium of dose coefficients based on ICRP publication 60. ICRP publication 119. Annals of ICRP 41(1):1–130

    Google Scholar 

  • ICRP (2013). Corrigenda to ICRP Publication 119: Compendium of dose coefficients based on ICRP Publication 60 [Ann. ICRP 41(s) 2012] Annals of the ICRP. Volume 42, Issue 4, August 2013, Pages 345–362

  • ISO (1987) ISO 3696. Water for analytical laboratory use. Specification and test methods

  • ISO (2005) ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories. International Organization for Standarization

  • Jia G, Belli M, Liu S, Sansone U, Xua C, Rosamilia S, Xiao X, Gaudino S, Chena L, Yang H (2006) The fractionation and determination procedures for the speciation of 210Pb and 210Po in soil samples. Anal Chim Acta 562(1):51–58. https://doi.org/10.1016/j.aca.2006.01.058

    Article  CAS  Google Scholar 

  • Jouve A, Lejeune M, Rey J (1999) A new method for determining the bioavailability of radionuclides in the soil solution. J Environ Radioactiv 43(3):277–289. https://doi.org/10.1016/S0265-931X(98)00046-0

    Article  CAS  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Krouglov SV, Kurinov AD, Alexakhin RM (1998) Chemical fractionation of 90Sr, 106Ru, 137Cs and 144Ce in Chernobyl-contaminates soils: an evolution in the course of time. J Environ Radioactiv 38(1):59–76. https://doi.org/10.1016/S0265-931X(97)00022-2

    Article  CAS  Google Scholar 

  • Nisbet AF, Salbu B, Shaw S (1993) Association of radionuclides with different molecular size fractions in soil solution: implications for plant uptake. J Environ Radioactiv 18(1):71–84. https://doi.org/10.1016/0265-931X(93)90066-G

    Article  CAS  Google Scholar 

  • Pavlotskaya FI (1974) Migration of radioactive products from global fallout in soils. Atomizdat, Moskow (in Russian)

    Google Scholar 

  • Puhakainen M, Riekkinen I, Heikkinen T, Jaakkola T, Steinnes E, Rissanen K, Suomela M, Thørring H (2001) Effect of chemical pollution on forms of 137Cs, 90Sr and 239,240Pu in Artic soil studied by sequential extraction. J Environ Radioactiv 52(1):17–29. https://doi.org/10.1016/S0265-931X(00)00103-X

    Article  CAS  Google Scholar 

  • Riise G, Bjørnstad HE, Lien HN, Oughton DH, Salbu B (1990) A study on radionuclide association with soil components using a sequential extraction procedure. J Radioanal Nucl Chem 142(2):531–538. https://doi.org/10.1007/BF02040324

    Article  CAS  Google Scholar 

  • Salomons W, Försner U (1980) Trace metals analysis on polluted sediments. Part 2, evaluation of environmental impact. Environ Technol 1(11):506–517. https://doi.org/10.1080/09593338009384007

    Article  CAS  Google Scholar 

  • Schultz MK, Inn KGW, Lin ZC, Burnett WC, Smith G, Biegalski SR, Filliben J (1998) Identification of radionuclide partitioning in soils and sediments: determination of optimum conditions for the exchangeable fraction of the NIST standard sequential extraction protocol. Appl Radiat Isot 49(9–11):1289–1293. https://doi.org/10.1016/S0969-8043(97)10062-8

    Article  CAS  Google Scholar 

  • Sill CW (1987) Precipitation of actinides as fluorides or hydroxides for high resolution alpha spectrometry. Nucl. Chem. Waste Manag 7:201–215

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Visón M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 57:844–851

    Article  Google Scholar 

  • USDA (2004) Soil survey laboratory methods manual. Soil survey investigations report no. 42. Version 4.0. USDA-NCRS, Lincoln, USA

Download references

Funding

This work was made possible by the funding provided by the Spanish Ministry of Science and Innovation to the project n° FIS2011-29788. We are also grateful to the Autonomous Government of Extremadura (Junta de Extremadura) for financial support granted to the LARUEX research group (FQM001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Guillén.

Additional information

Responsible editor: Georg Steinhauser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén, J., Muñoz-Serrano, A., Baeza, A.S. et al. Speciation of naturally occurring radionuclides in Mediterranean soils: bioavailabilty assessment. Environ Sci Pollut Res 25, 6772–6782 (2018). https://doi.org/10.1007/s11356-017-1021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1021-z

Keywords

Navigation