Skip to main content

Effect of Tactile Affordance During the Design of Extended Reality-Based Training Environments for Healthcare Contexts

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14027))

Included in the following conference series:

  • 1070 Accesses

Abstract

In this paper, the effect of tactile affordance during the design of Extended Reality (XR) based environments is presented. Tactile affordance is one of the Human eXtended Reality Interaction (HXRI) criteria which help lay the foundation for human-centric XR-based training environments. XR-based training environments developed for two surgical procedures have been used to study the role of tactile affordance. The first XR environment is developed for the Condylar plating surgical procedure which is performed to treat the fractures of the femur bone and the second XR environment is developed to train users in endotracheal intubation. Three studies have been conducted to understand the influence of different interaction methods to elevate tactile affordance in XR-based environments. The studies and the results of the studies have been exhaustively discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panait, L., Akkary, E., Bell, R.L., Roberts, K.E., Dudrick, S.J., Duffy, A.J.: The role of haptic feedback in laparoscopic simulation training. J. Surg. Res. 156(2), 312–316 (2009)

    Article  Google Scholar 

  2. Huber, T., Paschold, M., Hansen, C., Wunderling, T., Lang, H., Kneist, W.: New dimensions in surgical training: immersive virtual reality laparoscopic simulation exhilarates surgical staff. Surg. Endosc. 31(11), 4472–4477 (2017). https://doi.org/10.1007/s00464-017-5500-6

    Article  Google Scholar 

  3. Echegaray, G., Herrera, I., Aguinaga, I., Buchart, C., Borro, D.: A brain surgery simulator. IEEE Comput. Graph. Appl. 34(3), 12–18 (2014)

    Article  Google Scholar 

  4. Choi, K.S., Soo, S., Chung, F.L.: A virtual training simulator for learning cataract surgery with phacoemulsification. Comput. Biol. Med. 39(11), 1020–1031 (2009)

    Article  Google Scholar 

  5. Pedersen, P., Palm, H., Ringsted, C., Konge, L.: Virtual-reality simulation to assess performance in hip fracture surgery. Acta Orthop. 85(4), 403–407 (2014)

    Article  Google Scholar 

  6. Ashtari, N., Bunt, A., McGrenere, J., Nebeling, M., Chilana, P.K.: Creating augmented and virtual reality applications: current practices, challenges, and opportunities. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13, April 2020

    Google Scholar 

  7. Tabrizi, L.B., Mahvash, M.: Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. J. Neurosurg. 123, 206–211 (2015)

    Article  Google Scholar 

  8. Botden, S.M., Buzink, S.N., Schijven, M.P., Jakimowicz, J.J.: ProMIS augmented reality training of laparoscopic procedures face validity. Simul. Healthc. 3(2), 97–102 (2008)

    Article  Google Scholar 

  9. Botden, S.M., de Hingh, I.H., Jakimowicz, J.J.: Suturing training in augmented reality: gaining proficiency in suturing skills faster. Surg. Endosc. 23(9), 2131–2137 (2009)

    Article  Google Scholar 

  10. Lu, S., Sanchez Perdomo, Y.P., Jiang, X., Zheng, B.: Integrating eye-tracking to augmented reality system for surgical training. J. Med. Syst. 44(11), 1–7 (2020). https://doi.org/10.1007/s10916-020-01656-w

    Article  Google Scholar 

  11. Ogawa, H., Hasegawa, S., Tsukada, S., Matsubara, M.: A pilot study of augmented reality technology applied to the acetabular cup placement during total hip arthroplasty. J. Arthroplasty. 33, 1833–1837 (2018)

    Article  Google Scholar 

  12. Shen, F., Chen, B., Guo, Q., Qi, Y., Shen, Y.: Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int. J. Comput. Assist. Radiol. Surg. 8, 169–179 (2013)

    Article  Google Scholar 

  13. Cho, H.S., Park, Y.K., Gupta, S., et al.: Augmented reality in bone tumour resection: an experimental study. Bone Joint Res. 6, 137–143 (2017)

    Article  Google Scholar 

  14. Elmi-Terander, A., Nachabe, R., Skulason, H., et al.: Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. Spine (Phila pa 1976) 43, 1018–1023 (2018)

    Google Scholar 

  15. Wang, H., Wang, F., Leong, A.P.Y., Xu, L., Chen, X., Wang, Q.: Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study. Int. Orthop. 40(9), 1941–1947 (2015). https://doi.org/10.1007/s00264-015-3028-8

    Article  Google Scholar 

  16. Sutcliffe, A.G., Poullis, C., Gregoriades, A., Katsouri, I., Tzanavari, A., Herakleous, K.: Reflecting on the design process for virtual reality applications. Int. J. Hum.-Comput. Interact. 35(2), 168–179 (2019)

    Article  Google Scholar 

  17. Moosavi, M.S., Williams, J., Guillet, C., Merienne, F., Cecil, J., Pickett, M.: Disassociation of visual-proprioception feedback to enhance endotracheal intubation. In: 2022 International Conference on Future Trends in Smart Communities (ICFTSC), pp. 233–236. IEEE, December 2022

    Google Scholar 

  18. Moosavi, M.S., Raimbaud, P., Guillet, C., Plouzeau, J., Merienne, F.: Weight perception analysis using pseudo-haptic feedback based on physical work evaluation. Front. Virtual Reality 4, 13 (2023)

    Google Scholar 

  19. Menekse Dalveren, G.G., Cagiltay, N.E., Ozcelik, E., Maras, H.: Insights from pupil size to mental workload of surgical residents: feasibility of an educational computer-based surgical simulation environment (ECE) considering the hand condition. Surg. Innov. 25(6), 616–624 (2018)

    Article  Google Scholar 

  20. Gibson, J.J.: “The concept of affordances.” Perceiving, acting, and knowing 1 (1977)

    Google Scholar 

  21. Donald, N.: The Design of Everyday Things. ISBN: 0–465–06710–7. Originally published under the title The Psychology of Everyday Things (often abbreviated to POET)

    Google Scholar 

  22. Gaver, W.W.: Technology affordances. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 79–84, March 1991

    Google Scholar 

  23. Pointon, G., Thompson, C., Creem-Regehr, S., Stefanucci, J., Bodenheimer, B.: Affordances as a measure of perceptual fidelity in augmented reality. In: 2018 IEEE VR 2018 Workshop on Perceptual and Cognitive Issues in AR (PERCAR), pp. 1–6, March 2018

    Google Scholar 

  24. Wu, H., Adams, H., Pointon, G., Stefanucci, J., Creem-Regehr, S., Bodenheimer, B.: Danger from the deep: a gap affordance study in augmented reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1775–1779. IEEE, March 2019

    Google Scholar 

  25. Regia-Corte, T., Marchal, M., Cirio, G., Lécuyer, A.: Perceiving affordances in virtual reality: influence of person and environmental properties in perception of standing on virtual grounds. Virtual Reality 17(1), 17–28 (2013)

    Article  Google Scholar 

  26. Van Vugt, H.C., Hoorn, J.F., Konijn, E.A., de Bie Dimitriadou, A.: Affective affordances: Improving interface character engagement through Interaction. Int. J. Hum. Comput. Stud. 64(9), 874–888 (2006)

    Article  Google Scholar 

  27. Gagnon, H.C., Rosales, C.S., Mileris, R., Stefanucci, J.K., Creem-Regehr, S.H., Bodenheimer, R.E.: Estimating distances in action space in augmented reality. ACM Trans. Appl. Percept. (TAP) 18(2), 1–16 (2021)

    Article  Google Scholar 

  28. Koutromanos, G., Mavromatidou, E., Tripoulas, C., Georgiadis, G. Exploring the educational affordances of augmented reality for pupils with moderate learning difficulties. In: 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, pp. 203–207, December 2020

    Google Scholar 

  29. Thompson, C.J., Hite, R.: Exploring the affordances of computer-based assessment in measuring three-dimensional science learning. Int. J. Learn. Technol. 16(1), 3–36 (2021)

    Article  Google Scholar 

  30. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Advances in Psychology, North-Holland, vol. 52, pp. 139–183 (1998)

    Google Scholar 

  31. Gupta, A., Cecil, J., Pirela-Cruz, M., Shamsuddin, R., Kennison, S., Crick, C.: An Investigation on the role of affordance in the design of extended reality based environments for surgical training. In: 2022 IEEE International Systems Conference (SysCon), pp. 1–7. IEEE, April 2022

    Google Scholar 

  32. Gupta, A., Cecil, J., Pirela-Cruz, M.: A cyber-human based integrated assessment approach for Orthopedic surgical training. In: 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8. IEEE, August 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, A., Cecil, J., Moosavi, M.s., Williams, J., Merienne, F. (2023). Effect of Tactile Affordance During the Design of Extended Reality-Based Training Environments for Healthcare Contexts. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2023. Lecture Notes in Computer Science, vol 14027. Springer, Cham. https://doi.org/10.1007/978-3-031-35634-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35634-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35633-9

  • Online ISBN: 978-3-031-35634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics