Skip to main content

Plant Growth-Promoting Rhizobacteria (PGPR): Strategies to Improve Heavy Metal Stress Under Sustainable Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

Among several soil pollutants, the heavy metal effluents discharged from different industries directly or indirectly influence the global environmental balance and eventually decrease agricultural productivity. As a result of these harmful activities, soil pollution due to heavy metal toxicity is a potentially crucial environmental issue globally. The conventional methods of removing the huge metals from the environment are not eco-friendly, and these processes produce huge toxic residues. So, in this situation, bioremediation is the most preferred way to minimise the effects of heavy metals on the environment. Under such circumstances, the impact of plant growth-promoting rhizobacteria (PGPR) in remediation of metal toxicated areas has gained importance in sustainable agriculture systems. PGPRs increase plant growth by solubilising phosphate, synthesising IAA, producing enzymes, fixing the nitrogen, etc. So, the inoculation of suitable and specific heavy metal-tolerant PGPR strains associated with plants can maximise the phytoremediation. In this work, the impact of PGPR on remediation of the heavy metal contaminated zone is adequately described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboushanab, R. A. I., Angle, J. S., & Chaney, R. L. (2006). Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry, 38(9), 2882–2889. https://doi.org/10.1016/j.soilbio.2006.04.045.

    Article  CAS  Google Scholar 

  • Afzal, A., & Bano, A. (2008). Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture and Biology, 10(8530), 1560.

    Google Scholar 

  • Akhgar, A., Arzanlou, M., Bakker, A. H. M., & Hamidpour, M. (2014). Characterisation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere, 24(4), 461–468.

    Article  Google Scholar 

  • Alori, E. T., Glick, B. R., & Babalola, O. O. (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8, 971.

    Google Scholar 

  • Annapurna, K., Kumar, A., Kumar, L. V., Govindasamy, V., Bose, P., & Ramadoss, D. (2013). PGPR-induced systemic resistance (ISR) in plant disease management. In D. Maheshwari (Ed.), Bacteria in agrobiology: Disease management. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Arora, N. K., Tewari, S., & Singh, R. (2013). Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 411–449). Berlin: Springer.

    Chapter  Google Scholar 

  • Arora, N. K., Tewari, S., Singh, S., Lal, N., & Maheshwari, D. K. (2012). PGPR for protection of plant health under saline conditions. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 239–258). Springer-Verlag.

    Chapter  Google Scholar 

  • Arzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27(2), 197–205. https://doi.org/10.1007/s11274-010-0444-1.

    Article  CAS  Google Scholar 

  • Avis, T. J., Gravel, V., Antoun, H., & Tweddell, R. J. (2008). Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, 40(7), 1733–1740. https://doi.org/10.1016/j.soilbio.2008.02.013.

    Article  CAS  Google Scholar 

  • Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4(Suppl.)), 1044–1051. https://doi.org/10.1590/s1415-47572012000600020.

    Article  CAS  Google Scholar 

  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilisers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66. https://doi.org/10.1186/1475-2859-13-66.

    Article  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9.

    Article  CAS  Google Scholar 

  • Barea, J-M., Pozo, M., Azcón, R., & Azcón-Aguilar, C., (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417):1761–1778. https://doi.org/10.1093/jxb/eri197.

    Google Scholar 

  • Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth- promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245. https://doi.org/10.1139/w99-143.

    Article  CAS  Google Scholar 

  • Cavaglieri, L., Orlando, J., Rodríguez, M. I., Chulze, S., & Etcheverry, M. (2005). Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology, 156(5–6), 748–754. https://doi.org/10.1016/j.resmic.2005.03.001.

    Article  CAS  Google Scholar 

  • Chakraborty, U., Chakraborty, B., & Basnet, M. (2006). Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology, 46(3), 186–195. https://doi.org/10.1002/jobm.200510050.

    Article  CAS  Google Scholar 

  • Chen, L., Luo, S., Li, X., Wan, Y., Chen, J., & Liu, C. (2014). Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry, 68, 300–308. https://doi.org/10.1016/j.soilbio.2013.10.021.

    Article  CAS  Google Scholar 

  • Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clément, C., & Ait Barka, E. (2005). Endophytic colonisation of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain 45. Applied and Environmental Microbiology, 71(4), 1685–1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005.

    Article  CAS  Google Scholar 

  • Cornelis, P. (2010). Iron uptake and metabolism in pseudomonads. Applied Microbiology and Biotechnology, 86(6), 1637–1645. https://doi.org/10.1007/s00253-010-2550-2.

    Article  CAS  Google Scholar 

  • Datta, B., & Chakrabartty, P. K. (2014). Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3. Biotech, 4(4), 391–401. https://doi.org/10.1007/s13205-013-0164-y.

    Article  Google Scholar 

  • de Souza, J. T., Weller, D. M., & Raaijmakers, J. M. (2003). Frequency, diversity and activity of 2, 4-diacetylphloroglucinol producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93(1), 54–63. https://doi.org/10.1094/PHYTO.2003.93.1.54.

    Article  Google Scholar 

  • Djordjevic, M. A., Gabriel, D. W., & Rolfe, B. G. (1987). Rhizobium-the refined parasite of legumes. Annual Review of Phytopathology, 25(1), 145–168. https://doi.org/10.1146/annurev.py.25.090187.001045.

    Article  Google Scholar 

  • Dimkpa, C., Svatos, A., Merten, D., Büchel, G., & Kothe, E. (2008). Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Canadian Journal of Microbiology, 54(3), 163–172. https://doi.org/10.1139/w07-130.

    Article  CAS  Google Scholar 

  • Döbereiner, J. (1997). Biological nitrogen fixation in the tropics: Social and economic contributions. Soil Biology and Biochemistry, 29(5–6), 771–774. https://doi.org/10.1016/S0038-0717(96)00226-X.

    Article  Google Scholar 

  • Egamberdiyeva, D. (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maise in two different soils. Applied Soil Ecology, 36(2–3), 184–189. https://doi.org/10.1016/j.apsoil.2007.02.005.

    Article  Google Scholar 

  • El-Akhal, M. R., Rincón, A., Coba de la Peña, T., Lucas, M. M., El Mourabit, N., Barrijal, S., & Pueyo, J. J. (2013). Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biology, 15(2), 415–421. https://doi.org/10.1111/j.1438-8677.2012.00634.x.

    Article  CAS  Google Scholar 

  • Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., … Minamisawa, K. (2001). Endophytic colonisation and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environmental Microbiology, 67(11), 5285–5293. https://doi.org/10.1128/AEM.67.11.5285-5293.2001.

    Article  CAS  Google Scholar 

  • Estrada-de los Santos, P., Bustillos-Cristales, R., & Caballero-Mellado, J. (2001). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology, 67(6), 2790–2798. https://doi.org/10.1128/AEM.67.6.2790-2798.2001, PubMed: 27902798.

    Article  CAS  Google Scholar 

  • Fekete, F. A., Spence, J. T., & Emery, T. (1983). Siderophores produced by nitrogen-fixing Azotobacter vinelandii OP in iron-limited continuous culture. Applied and Environmental Microbiology, 46(6), 1297–1300. https://doi.org/10.1128/aem.46.6.1297-1300.1983.

    Article  CAS  Google Scholar 

  • Flores-Félix, J. D., Silva, L. R., Rivera, L. P., Marcos-García, M., García-Fraile, P., Martínez-Molina, E., … Rivas, R. (2015). Plants probiotics as a tool to produce highly functional fruits: The case of Phyllobacterium and vitamin C in strawberries. PLoS One, 10(4), e0122281. https://doi.org/10.1371/journal.pone.0122281.

    Article  CAS  Google Scholar 

  • Gaby, J. C., & Buckley, D. H. (2012). A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One, 7(7), e42149. https://doi.org/10.1371/journal.pone.0042149.

    Article  CAS  Google Scholar 

  • Gaind, S., & Gaur, A. C. (1991). Thermo tolerant phosphate solubilising microorganisms and their interaction with mung bean. Plant and Soil, 133(1), 141–149. https://doi.org/10.1007/BF00011908.

    Article  CAS  Google Scholar 

  • Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Agricultural and Biosystems Engineering, 3, 1.

    Google Scholar 

  • Gillis, M., Kesters, K., Hoste, B., Janssens, D., Kropenstedt, R. M., Stephen, M. P., … de Ley, J. (1995). Acetobacter diazotrophicussp. Nov. a nitrogen fixing acid bacterium associated with sugarcane. International Journal of Systematic and Evolutionary Microbiology, 39, 361–364.

    Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401.

    Article  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329–339. https://doi.org/10.1007/s10658-007-9162-4.

    Article  CAS  Google Scholar 

  • Glick, B. R., Karaturovíc, D. M., & Newell, P. C. (1995). A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology, 41(6), 533–536. https://doi.org/10.1139/m95-070.

    Article  CAS  Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. (1999). A model for the lowering of plant ethylene concentrations by plant growth promoting rhizobacteria. Journal of Theoretical Biology, 190, 63–68.

    Article  Google Scholar 

  • Govindarajan, M., Balandreau, J., Kwon, S. W., Weon, H. Y., & Lakshminarasimhan, C. (2008). Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology, 55(1), 21–37. https://doi.org/10.1007/s00248-007-9247-9.

    Article  Google Scholar 

  • Grayston, S. J., & Germida, J. J. (1991). Sulphur-oxidising bacteria as plant growth promoting rhizobacteria for canola. Canadian Journal of Microbiology, 37(7), 521–529. https://doi.org/10.1139/m91-088.

    Article  CAS  Google Scholar 

  • Han, H. S., & Lee, K. D. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1(2), 176–180.

    Google Scholar 

  • Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598. https://doi.org/10.1007/s13213-010-0117-1.

    Article  Google Scholar 

  • He, L. Y., Zhang, Y. F., Ma, H. Y., Su, L. N., Chen, Z. J., & Wang, Q. Y. (2010). Characterisation of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology, 44(1), 49–55. https://doi.org/10.1016/j.apsoil.2009.09.004.

    Article  Google Scholar 

  • Heidari, M., & Golpayegani, A. (2012). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11(1), 57–61. https://doi.org/10.1016/j.jssas.2011.09.001.

    Article  Google Scholar 

  • Hirst, I. D., Hastings, T. S., & Ellis, A. E. (1991). Siderophore production by Aeromonas salmonicida. Journal of General Microbiology, 137(5), 1185–1192. https://doi.org/10.1099/00221287-137-5-1185.

    Article  CAS  Google Scholar 

  • Holinsworth, B., & Martin, J. D. (2009). Siderophore production by marine-derived fungi. Biometals: an International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 22(4), 625–632. https://doi.org/10.1007/s10534-009-9239-y.

    Article  CAS  Google Scholar 

  • Retrieved from. https://www.google.com/search?hl=en&biw=1366&bih=577&tbm=isch&sa=1&ei=pBMZXPXgKdHbrQHRs5KoDw&q=mechanism+of+pgpr+action+in+cycle+form&oq=mechanism+of+pgpr+action+in+cycle+form&gs_l=img.3. 1.0.0.240.2902.0j11j4.. . . . 0. . . .1..gws-wiz-img.iFqJeLp4_80#imgrc=8hiQbTaie4kuXM, 42372(48609), 49154.

  • Retrieved from. https://www.google.com/search?q=impact+of+pgpr+on+plant+growth&hl=en&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiy4v-s26nfAhUNWX0KHTaDB3EQ_AUIDygC&biw=1366&bih=577#imgrc=kx_AXX_KjqijIM.

  • Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72(2), 157–164. https://doi.org/10.1016/j.chemosphere.2008.02.006.

    Article  CAS  Google Scholar 

  • Joo, G. J., Kim, Y. M., Kim, J. T., Rhee, I. K., Kim, J. H., & Lee, I. J. (2005). Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology, 43(6), 510–515.

    CAS  Google Scholar 

  • Joshi, M., Shrivastava, R., Sharma, A. K., & Prakash, A. (2012). Screening of resistant verities and antagonistic Fusarium oxysporum for biocontrol of Fusarium Wilt of Chilli. Plant Pathologia et Microbiologia, 3, 134.

    Google Scholar 

  • Kang, B. G., Kim, W. T., Yun, H. S., & Chang, S. C. (2010). Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Reports, 4(3), 179–183. https://doi.org/10.1007/s11816-010-0136-1.

    Article  Google Scholar 

  • Khan, A. L., Waqas, M., Kang, S. M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., … Lee, I. J. (2014). Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology, 52(8), 689–695. https://doi.org/10.1007/s12275-014-4002-7.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286(5776), 885–886. https://doi.org/10.1038/286885a0.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Lifshitz, R., & Schroth, M. N. (1988). Pseudomonas inoculants to benefit plant production. ISI Atlas of Science – Animal and Plant Sciences, 1, 60–64.

    Google Scholar 

  • Kumar, H., Bajpai, V. K., Dubey, R. C., Maheshwari, D. K., & Kang, S. C. (2010). Wilt disease management and enhancement of growth and yield of Cajanus cajan (L.) var. Manak by bacterial combinations amended with chemical fertiliser. Crop Protection, 29(6), 591–598. https://doi.org/10.1016/j.cropro.2010.01.002.

    Article  Google Scholar 

  • Ladha, J. K., Pathak, H., Krupnik, J., Six, T., & van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 87, 85–156. https://doi.org/10.1016/S0065-2113(05)87003-8.

    Article  CAS  Google Scholar 

  • Landa, B. B., Hervás, A., Bettiol, W., & Jiménez-Díaz, R. M. (1997). Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica, 25(4), 305–318. https://doi.org/10.1007/BF02981094.

    Article  Google Scholar 

  • Liang, X., He, C. Q., Ni, G., Tang, G. I., Chen, X. P., & Lei, Y. R. (2014). Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere, 24(3), 322–329. https://doi.org/10.1016/S1002-0160(14)60018-7.

    Article  CAS  Google Scholar 

  • Lippi, D., Cacciari, I., Paola, Q., & Pietrosanti, T. (1991). Interactions between Azospirillum and sorghum rhizosphere isolates under different cultural conditions.

    Google Scholar 

  • Loper, J. E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. European Journal of Plant Pathology, 119(3), 265–278. https://doi.org/10.1007/s10658-007-9179-8.

    Article  CAS  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009). Isolation and characterisation of Ni mobilising PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere, 75(6), 719–725. https://doi.org/10.1016/j.chemosphere.2009.01.056, PubMed: 19232424.

  • Ma, J. F. (2005). Plant root responses to three abundant soil minerals: Silicon, aluminum and iron. Critical Reviews in Plant Sciences, 24(4), 267–281. https://doi.org/10.1080/07352680500196017.

    Article  CAS  Google Scholar 

  • Maheshwari, D. K., Dubey, R. C., Aeron, A., Kumar, B., Kumar, S., Tewari, S., & Arora, N. K. (2012). Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilising Azotobacter chroococcum TRA2 and chemical fertiliser. World Journal of Microbiology and Biotechnology, 28(10), 3015–3024. https://doi.org/10.1007/s11274-012-1112-4.

    Article  CAS  Google Scholar 

  • Maxton, A., Singh, P., Andy, A., Prasad, S. M., & Masih, S. A. (2018). PGPR: A boon in stress tolerance and bio control. Research Journal of Biotechnology, 13, 105–111.

    CAS  Google Scholar 

  • Miransari, M., & Smith, D. L. (2014). Plant hormones and seed germination. Environmental and Experimental Botany, 99, 110–121. https://doi.org/10.1016/j.envexpbot.2013.11.005.

    Article  CAS  Google Scholar 

  • Nadeem, S. M., Naveed, M., Zahir, Z. A., & Asghar, H. N. (2013). Plant-microbe interactions for sustainable agriculture: Fundamentals and recent advances. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 51–103). India: Springer.

    Chapter  Google Scholar 

  • Naznin, H. A., Kimura, M., Miyazawa, M., & Hyakumachi, M. (2013). Analysis of volatile organic compounds emitted by plant growth promoting fungus Phoma sp. GS83 for growth promotion effects on tobacco. Microbes and Environments, 28(1), 42–49. https://doi.org/10.1264/jsme2.me12085.

    Article  Google Scholar 

  • Okon, Y., & Kapulnik, Y. (1986). Development and function of Azospirillum-inoculated roots. Plant and Soil, 90(1–3), 3–16. https://doi.org/10.1007/BF02277383.

    Article  CAS  Google Scholar 

  • Ong, K. S., Aw, Y. K., Lee, L. H., Yule, C. M., Cheow, Y. L., & Lee, S. M. (2016). Burkholderia paludis sp. nov., an antibiotic-siderophore producing novel Burkholderia cepacia complex species, isolated from Malaysian tropical peat swamp soil. Frontiers in Microbiology, 7, 2046. https://doi.org/10.3389/fmicb.2016.02046.

    Article  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125. https://doi.org/10.1016/j.tim.2007.12.009.

    Article  CAS  Google Scholar 

  • Pahari, A., & Mishra, B. B. (2017). Characterisation of siderophore producing rhizobacteria and its effect on growth performance of different vegetables. International Journal of Current Microbiology and Applied Sciences, 6(5), 1398–1405. https://doi.org/10.20546/ijcmas.2017.605.152.

    Article  CAS  Google Scholar 

  • Pandey, P., & Maheshwari, D. K. (2007). Two sp. microbial consortium for growth promotion of Cajanus cajan. Current Science, 92, 1137–1142.

    CAS  Google Scholar 

  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilisation by rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25–31.

    Google Scholar 

  • Piao, C. G., Tang, W. H., & Chen, Y. X. (1992). Study on the biological activity of yield-increasing bacteria. Chinese Journal of Microecology, 4, 55–62.

    Google Scholar 

  • Rabeendran, N., Moot, D. J., Jones, E. E., & Stewart, A. (2000). Inconsistent growth promotion of cabbage and lettuce from Trichoderma isolates. New Zealand Journal of Plant Protection, 53, 143–146.

    Article  Google Scholar 

  • Radjacommare, R., Kandan, A., Nandakumar, R., & Samiyappan, R. (2004). Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria treated rice plants. Journal of Phytopathology, 152(6), 365–370. https://doi.org/10.1111/j.1439-0434.2004.00857.x.

    Article  CAS  Google Scholar 

  • Rivas, R., Martens, M., de Lajudie, P., & Willems, A. (2009). Multilocus sequence analysis of the genus Bradyrhizobium. Systematic and Applied Microbiology, 32(2), 101–110. https://doi.org/10.1016/j.syapm.2008.12.005.

    Article  CAS  Google Scholar 

  • Roy Chowdhury, A., Kundu, S., & SenGupta, C. (2017). Plant growth promoting rhizobacteria (PGPR): One step ahead to sustainable agriculture. International Journal of Innovative Science Engineering and Technology, 4(7), 41–48.

    Google Scholar 

  • Ryder, M. H., Yan, Z., Terrace, T. E., Rovira, A. D., & Tang, W. (1999). Uses of Bacillus isolated in China to suppress take all and Rhizoctonia root rot, and promote seedling growth of glasshouse grown wheat in Australian soils. Soil Biology and Biochemistry, 31, 19–29.

    Article  CAS  Google Scholar 

  • Sabry, S. R. S., Saleh, S. A., Batchelor, C. A., Jones, J., Jotham, J., Webster, G., … Cocking, E. C. (1997). Endophytic establishment of Azorhizobium caulinodans in wheat. Proceedings of the Royal Society of London. Series B, 264(1380), 341–346. https://doi.org/10.1098/rspb.1997.0049.

    Article  Google Scholar 

  • Sacherer, P., Défago, G., & Haas, D. (1994). Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiology Letters, 116(2), 155–160. https://doi.org/10.1111/j.1574-6968.1994.tb06694.x.

    Article  CAS  Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9.

    Article  CAS  Google Scholar 

  • Shamsuddin, H. Z., TanZuan, K., Radziah, O., Halimi, M. S., Khairuddin, R. A., & Sheikh, H. (2014). Isolation and characterisation of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. American Journal of Agricultural and Biological Sciences, 9(3), 342–360. https://doi.org/10.3844/ajabssp.2014.342.360.

    Article  Google Scholar 

  • Shanmugaiah, V., Karmegham, N., Harikrishnan, H., Jayaprakashvel, M., & Natesan, B. (2015). Biocontrol mechanisms of siderophores against bacterial plant pathogens. Sustainable approaches to controlling plant pathogenic bacteria, Edition: First [Chapter]. In V. R. Kannan & K. K. Bastas (Eds.), Biocontrol mechanisms of siderophores against bacterial plant pathogens (pp. 167–186). CRC Press.

    Google Scholar 

  • Shenker, M., Oliver, I., Helmann, M., Hadar, Y., & Chen, Y. (1992). Utilisation by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. Journal of Plant Nutrition, 15(10), 2173–2182. https://doi.org/10.1080/01904169209364466.

    Article  CAS  Google Scholar 

  • Shilev, S. (2013). Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 147–150). India: Springer.

    Chapter  Google Scholar 

  • Singh, S., & Kapoor, K. K. (1999). Inoculation with phosphate-solubilising microorganisms and a vesicular arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biology and Fertility of Soils, 28, 139–144.

    Article  CAS  Google Scholar 

  • Sokolova, M. G., Akimova, G. P., & Vaishlia, O. B. (2011). Effect of phytohormones synthesised by rhizosphere bacteria on plants. Prikladnaia Biokhimiia i Mikrobiologiia, 47, 302–307.

    CAS  Google Scholar 

  • Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438. https://doi.org/10.1101/cshperspect.a001438.

    Article  CAS  Google Scholar 

  • Strzelczyk, E., Kampert, M., & Li, C. Y. (1994). Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiological Research, 149(1), 55–60. https://doi.org/10.1016/S0944-5013(11)80136-9.

    Article  CAS  Google Scholar 

  • Sujatha, N., & Ammani, K. (2013). Siderophore production by the isolates of fluorescent pseudomonads. International Journal of Current Research and Review, 5, 1–7.

    Google Scholar 

  • Sharma, S. K., Ramesh, A., & Johri, B. N. (2013). Isolation and characterisation of plant growth promoting Bacillus amyloliquefaciens strain Sks_bnj_1and its influence on rhizosphere soil properties and nutrition of soybean (Glycine max L. Merrill). Journal of Virology & Microbiology, 2013, 1–19.

    Article  Google Scholar 

  • Tilak, K. V. B. R., Singh, G., & Mukerji, K. G. (1999). Biocontrol—Plant growth promoting rhizobacteria: Mechanism of action. In K. G. Mukerji, B. P. Chamola, & R. K. Upadhyay (Eds.), Biotechnological approaches in biocontrol of plant pathogens (Vol. 10, pp. 114–115). Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., … Niinemets, Ãœ. (2014). Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS One, 9(5), e96086. https://doi.org/10.1371/journal.pone.0096086.

    Article  CAS  Google Scholar 

  • Upadyay, S. K., Maurya, S. K., & Singh, D. P. (2012). Salinity tolerance in free living plant growth promoting rhizobacteria. Indian Journal of Scientific Research, 3, 73–78.

    Google Scholar 

  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules, 21(5), 573. https://doi.org/10.3390/molecules21050573.

    Article  CAS  Google Scholar 

  • Verma, V. C., Singh, S. K., & Prakash, S. (2011). Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. Journal of Basic Microbiology, 51(5), 550–556. https://doi.org/10.1002/jobm.201000155.

    Article  CAS  Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilisers. Plant and Soil, 255(2), 571–586. https://doi.org/10.1023/A:1026037216893.

    Article  CAS  Google Scholar 

  • Wani, S. A., Chand, S., & Ali, T. (2013). Potential use of Azotobacter chroococcum in crop production: An overview. Current Agriculture Research Journal, 1(1), 35–38. https://doi.org/10.12944/CARJ.1.1.04.

    Article  Google Scholar 

  • Wu, S. C., Cheung, K. C., Luo, Y. M., & Wong, M. H. (2006). Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 140(1), 124–135. https://doi.org/10.1016/j.envpol.2005.06.023.

    Article  CAS  Google Scholar 

  • Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., Ninke, K., … Dazzo, F. B. (1997). Natural endophytic association between Rhizobium leguminoserum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil, 194(1/2), 99–114. https://doi.org/10.1023/A:1004269902246.

    Article  CAS  Google Scholar 

  • Yazdani, M., Bahmanyar, M. A., Pirdashti, H., & Esmaili, M. A. (2009). Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). International Journal of Agricultural and Biosystems Engineering, 3, 1.

    Google Scholar 

  • Zahran, H. H. (2001). Rhizobia from wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology, 91(2–3), 143–153. https://doi.org/10.1016/s0168-1656(01)00342-x.

    Article  CAS  Google Scholar 

  • Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilising bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284.

    Article  CAS  Google Scholar 

  • Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., & Kim, H. (2003). Gemmatimona saurantiacagen. nov, sp. nov., a Gram-negative, aerobic, polyphosphate accumulating microorganism, the firrst cultured representative of the new bacterial phylum Gemmatimonadetesphyl. International Journal of Systematic and Evolutionary Microbiology, 53, 1155–1163.

    Article  CAS  Google Scholar 

  • Zwanenburg, B., Pospíšil, T., & Ćavar Zeljković, S. (2016). Strigolactones: New plant hormones in action. Planta, 243(6), 1311–1326. https://doi.org/10.1007/s00425-015-2455-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy Chowdhury, A. (2022). Plant Growth-Promoting Rhizobacteria (PGPR): Strategies to Improve Heavy Metal Stress Under Sustainable Agriculture. In: Bandh, S.A. (eds) Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-83066-3_11

Download citation

Publish with us

Policies and ethics