Skip to main content

Light Harvesting Modulation in Photosynthetic Organisms

  • Chapter
  • First Online:
Photosynthesis: Molecular Approaches to Solar Energy Conversion

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 47))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamska I (1995) Regulation of early light-inducible protein gene expression by blue and red light in etiolated seedlings involves nuclear and plastid factors. Plant Physiol 107:1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32

    Article  CAS  PubMed  Google Scholar 

  • Alboresi A, Caffarri S, Nogue F, Bassi R, Morosinotto T (2008) In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS One 3:e2033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen KD, Staehelin LA (1992) Biochemical characterization of photosystem II antenna polypeptides in grana and stroma membranes of spinach. Plant Physiol 100:1517–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson U, Heddad M, Adamska I (2003) Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Physiol 132:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrizhiyevskaya EG, Schwabe TM, Germano M, D’Haene S, Kruip J, van Grondelle R, Dekker JP (2002) Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942. Biochim Biophys Acta 1556:265–272

    Article  CAS  PubMed  Google Scholar 

  • Bailey S, Grossman A (2008) Photoprotection in cyanobacteria: regulation of light harvesting. Photochem Photobiol 84:1410–1420

    Article  CAS  PubMed  Google Scholar 

  • Ballottari M, Girardon J, Dall’osto L, Bassi R (2012) Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. Biochim Biophys Acta 1817:143–157

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Lohscheider JN, Albert S, Andersson U, Mendgen KW, Rojas-Stütz MC, Adamska I, Funck D (2017) Small one-helix proteins are essential for photosynthesis in Arabidopsis. Front Plant Sci 8:7

    Google Scholar 

  • Behrendt L, Larkum A, Norman A, Qvortrup K, Chen M, Ralph P, Sørensen SJ, …, Kühl M (2011) Endolithic chlorophyll d-containing phototrophs. ISME J 5:1072–1076

    Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaya D, Dufresne A, Vaulot D, Grossman A (2002) Analysis of the hli gene family in marine and freshwater cyanobacteria. FEMS Microbiol Lett 215:209–219

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Partensky F, Barber J (2001b) Antenna ring around photosystem I. Nature 413:590–590

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Bissati KE, Kirilovsky D (2001) Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism. Plant Physiol 125:1988–2000

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F, Bassi R, Dekker JP (1999) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38:2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffarri S, Tibiletti T, Jennings RC, Santabarbara S (2014) A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Peptide Sci 15:296–331

    Article  CAS  Google Scholar 

  • Cardona T (2015) A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth Res 126:111–134

    Article  CAS  PubMed  Google Scholar 

  • Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta 1817:26–43

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Liu X, Li Y, Liu CC, Yang F, Zhao J, Sui SF (2015) Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res 25:726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002a) Chlorophyll d as the major photopigment in Acaryochloris marina. J Porphyrins Phthalocyanines 6:763–773

    Article  CAS  Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002b) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514:149–152

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AW (2005a) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum A, Barber J (2005b) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708:367–374

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE (2005c) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhang Y, Blankenship RE (2008) Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. Photosynth Res 95:147–154

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Floetenmeyer M, Bibby TS (2009) Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Lett 583:2535–2539

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f--a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Hernandez-Prieto MA, Loughlin PC, Li Y, Willows RD (2019) Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions. BMC Genomics 20:207–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Chidgey JW, Linhartova M, Komenda J, Jackson PJ, Dickman MJ, Canniffe DP Konik P, …, Sobotka R (2014) A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26:1267–1279

    Google Scholar 

  • Dall’Osto L, Bressan M, Bassi R (2015) Biogenesis of light harvesting proteins. Biochim Biophys Acta 1847:861–887

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  • Dolganov NA, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci U S A 92:636–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducret A, Sidler W, Frank G, Zuber H (1994) The complete amino acid sequence of R-phycocyanin-I a and, l3 subunits from the red alga Porphyridium cruentum. Structural and phylogenetic relationships of the phycocyanins within the phycobiliprotein families. Eur. J. Biochem 221:563–580

    Article  CAS  PubMed  Google Scholar 

  • Ducret A, Sidler W, Wehrli E, Frank G, Zuber H (1996) Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Eur J Biochem 236:1010–1024

    Article  CAS  PubMed  Google Scholar 

  • Duhring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci U S A 103:7054–7058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duxbury Z, Schliep M, Ritchie RJ, Larkum AWD, Chen M (2009) Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynth Res 101:69–75

    Article  CAS  PubMed  Google Scholar 

  • Engelken J, Brinkmann H, Adamska I (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol Biol 10:233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engelken J, Funk C, Adamska I (2011) The extended light-harvesting complex (LHC) protein superfamily: classification and evolutionary dynamics. In: Burnap R, Vermaas W (eds) Functional Genomics and Evolution of Photosynthetic Systems. Springer, Dordrecht, pp 265–284

    Google Scholar 

  • Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM (2006) Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J Bacteriol 188:3345–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, …, Chang W(2015) Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol 22:729–735

    Google Scholar 

  • Feng X, Neupane B, Acharya K, Zazubovich V, Picorel R, Seibert M, Jankowiak R (2011) Spectroscopic study of the CP43 ‘complex and the PSI–CP43’sof the cyanobacterium Synechocystis PCC 6803. J Phys Chem B 115:13339–13349

    Article  CAS  PubMed  Google Scholar 

  • Funk C, Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38:9397–9404

    Article  CAS  PubMed  Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B, Renger G (1995) The nuclear-encoded chlorophyll-binding photosystem II-S protein is stable in the absence of pigments. J Biol Chem 270:30141–30147

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Bryant DA (2015) Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol 17:3450–3465

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Shen G, Bryant D (2015) Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life 5:4–24

    Article  CAS  Google Scholar 

  • Glazer AN, Wedemayer GJ (1995) Cryptomonad biliproteinsan evolutionary perspective. Photosynth Res 46:93–105

    Article  CAS  PubMed  Google Scholar 

  • Gindt YM, Zhou J, Bryant DA, Sauer K (1994) Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the Lcm, beta 18 and alpha AP-B chromophores. Biochim Biophys Acta 1186:153–162

    Article  CAS  PubMed  Google Scholar 

  • Golub M, Combet S, Wieland DCF, Soloviov D, Kuklin A, Lokstein H Schmitt FJ, …, Pieper J (2017) Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering. Biochim Biophys Acta 1858:318–324

    Google Scholar 

  • Grossman AR (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76:207–215

    Article  CAS  PubMed  Google Scholar 

  • Gryliuk G, Rätsep M, Hildebrandt S, Irrgang KD, Eckert HJ, Pieper J (2014) Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy. Biochim Biophys Acta 1837:1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Guglielmi G, Cohen-Bazire G, Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181–189

    Article  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  CAS  PubMed  Google Scholar 

  • Haworth P, Watson JL, Arntzen CJ (1983) The detection, isolation and characterization of a light-harvesting complex which is specifically associated with photosystem I. Biochim Biophys Acta 724:151–158

    Article  CAS  Google Scholar 

  • He Q, Dolganov N, Bjorkman O, Grossman AR (2001) The high light-inducible polypeptides in Synechocystis PCC6803: expression and function in high light. J Biol Chem 276:306–314

    Article  CAS  PubMed  Google Scholar 

  • Heddad M, Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci U S A 97:3741–3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heddad M, Noren H, Reiser V, Dunaeva M, Andersson B, Adamska I (2006) Differential expression and localization of early light-induced proteins in Arabidopsis. Plant Physiol 142:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Prieto MA, Futschik ME (2012) CyanoEXpress: a web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803 Bioinformation 8:634–638

    Article  PubMed  Google Scholar 

  • Hernandez-Prieto MA, Tibiletti T, Abasova L, Kirilovsky D, Vass I, Funk C (2011) The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: their involvement in chlorophyll biogenesis for photosystem II. Biochim Biophys Acta 1807:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Prieto MA, Lin Y, Chen M (2017) The complex transcriptional response of Acaryochloris marina to different oxygen levels. G3-Genes Genomes Genetics 7:517–532

    PubMed  Google Scholar 

  • Hernandez-Prieto MA, Li Y, Postier BL, Blankenship RE, Chen M (2018) Far-red light promotes biofilm formation in the cyanobacterium Acaryochloris marina. Environ Microbiol 20:535–545

    Article  CAS  PubMed  Google Scholar 

  • Hey D, Rothbart M, Herbst J, Wang P, Müller J, Wittmann D, Gruhl K, Grimm B (2017) LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol 174:1037–1050

    Google Scholar 

  • Ho MY, Shen G, Canniffe DP, Zhao C, Bryant DA (2016) Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353:aaf9178

    Article  PubMed  CAS  Google Scholar 

  • Ho MY, Gan F, Shen G, Bryant DA (2017) Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: II. Characterization of phycobiliproteins produced during acclimation to far-red light. Photosynth Res 131:187–202

    Article  CAS  PubMed  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W, Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13:3423–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Hsiao HY, He Q, Van Waasbergen LG, Grossman AR (2004) Control of photosynthetic and high-light-responsive genes by the histidine kinase DspA: negative and positive regulation and interactions between signal transduction pathways. J Bacteriol 186:3882–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci U S A 95:13319–13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Morschel E, Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412:250–261

    Article  CAS  PubMed  Google Scholar 

  • Jansson S (2006) A protein family saga: from photoprotection to light-harvesting (and back?). In: Demmig-Adams B, Adams WW III, Mattoo A (eds) Photoprotection, photoinhibition, Gene Regulation, and Environment. Springer, Dordrecht, pp 145–153

    Google Scholar 

  • Jansson S, Andersson J, Kim SJ, Jackowski G (2000) An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 42:345–351

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krausz N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kamen MD (1963) Photosynthetic apparatus (Chapter 2). In: Primary Processes in Photosynthesis. Academic, New York, pp 22–76

    Chapter  Google Scholar 

  • Kiss AZ, Ruban AV, Horton P (2008) The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283:3972–3978

    Article  CAS  PubMed  Google Scholar 

  • Knoppova J, Sobotka R, Tichy M, Yu J, Konik P, Halada P Nixon PJ, Komenda J (2014) Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26:1200–1212

    Google Scholar 

  • Kojima K, Suzuki-Maenaka T, Kikuchi T, Nakamoto H (2006) Roles of the cyanobacterial isiABC operon in protection from oxidative and heat stresses. Physiol Plant 128:507–519

    Article  CAS  Google Scholar 

  • Kouřil R, Yeremenko N, D’Haene S, Oostergetel GT, Matthijs HCP, Dekker JP, Boekema EJ (2005) Supercomplexes of IsiA and photosystem I in a mutant lacking subunit PsaL. Biochim Biophys Acta 1706:262–266

    Article  PubMed  CAS  Google Scholar 

  • Kouril R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12

    Article  CAS  PubMed  Google Scholar 

  • Kufryk G, Hernandez-Prieto M, Kieselbach T, Miranda H, Vermaas W, Funk C (2008) Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with photosystem II. Photosynth Res 95:135–145

    Article  CAS  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  PubMed  Google Scholar 

  • Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  CAS  PubMed  Google Scholar 

  • Li T, Yang HM, Cui SX, Suzuki I, Zhang LF, Li L, Bo T-T, …, Murata N (2012) Proteomic study of the impact of Hik33 mutation in Synechocystis sp. PCC 6803 under normal and salt stress conditions. J Proteome Res 11:502–514

    Google Scholar 

  • Li Y, Lin Y, Garvey CJ, Birch D, Corkery RW, Loughlin PC Chen M, …, Willows RD (2016) Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. Biochim Biophys Acta 1857:107–114

    Google Scholar 

  • Li ZK, Yin YC, Zhang LD, Zhang ZC, Dai GZ, Chen M, Qiu BS (2018) The identification of IsiA proteins binding chlorophyll d in the cyanobacterium Acaryochloris marina. Photosynth Res 135:165–175

    Article  CAS  PubMed  Google Scholar 

  • Lidholm J, Gustafsson P (1991) The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones. Curr Genet 20:161–166

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428:287–292

    Google Scholar 

  • Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142

    Article  CAS  PubMed  Google Scholar 

  • Loughlin P, Lin Y, Chen M (2013) Chlorophyll d and Acaryochloris marina: current status. Photosynth Res 116:277–293

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Zhang X, Zhu X, Li T, Zhan J, Chen H He C, …, Li T (2017) Dynamic changes of IsiA-containing complexes during long-term iron deficiency in Synechocystis sp. PCC 6803. Mol Plant 10:143–154

    Google Scholar 

  • Marx A, David L, Adir N (2014) Piecing together the phycobilisome. In: Hohmann-Marriott MF (ed) The Structural Basis of Biological Energy Generation. Springer, Dordrecht, pp 59–76

    Chapter  Google Scholar 

  • Matthijs HCP, van der Staay GWM, Mur LR (1994) Prochlorophytes: the ‘other’ cyanobacteria? In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Springer, Dordrecht, pp 49–64

    Chapter  Google Scholar 

  • Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I super-complex at 28 A resolution. Elife 4:e07433

    Article  PubMed  PubMed Central  Google Scholar 

  • Melkozernov AN, Bibby TS, Lin S, Barber J, Blankenship RE (2003) Time-resolved absorption and emission show that the CP43‘ antenna ring of iron-stressed Synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core. Biochemistry 42:3893–3903

    Article  CAS  PubMed  Google Scholar 

  • Miao D, Ding WL, Zhao BQ, Lu L, Xu QZ, Scheer H, Zhao KH (2016) Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335. Biochim Biophys Acta 1857:688–694

    Article  CAS  PubMed  Google Scholar 

  • Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee SGD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293

    Article  CAS  PubMed  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402–402

    Article  CAS  Google Scholar 

  • Montgomery BL (2008) Shedding new light on the regulation of complementary chromatic adaptation. Central Euro J Biol 3:351

    CAS  Google Scholar 

  • Muh F, Renger T, Zouni A (2008) Crystal structure of cyanobacterial photosystem II at 3.0 A resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiol Biochem 46:238–264

    Article  PubMed  CAS  Google Scholar 

  • Mulo P, Sicora C, Aro EM (2009) Cyanobacterial psbA gene family: optimization of oxygenic photosynthesis. Cell Mol Life Sci 66:3697–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulo P, Sakurai I, Aro EM (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta 1817:247–257

    Article  CAS  PubMed  Google Scholar 

  • Murray JW (2012) Sequence variation at the oxygen-evolving Centre of photosystem II: a new class of ‘rogue’ cyanobacterial D1 proteins. Photosynth Res 110:177–184

    Article  CAS  PubMed  Google Scholar 

  • Murray JW, Duncan J, Barber J (2006) CP43-like chlorophyll binding proteins: structural and evolutionary implications. Trends Plant Sci 11:152–158

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Ben-Shem A (2005) The structure of photosystem I and evolution of photosynthesis. BioEssays 27:914–922

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    Article  CAS  PubMed  Google Scholar 

  • Ozawa SI, Bald T, Onishi T, Xue H, Matsumura T, Kubo R Hippler M, …, Takahashi H (2018) Configuration of ten light-harvesting chlorophyll a/b complex I subunits in Chlamydomonas reinhardtii photosystem I. Plant Physiol 178:583–595

    Google Scholar 

  • Pan X, Li M, Wan T, Wang L, Jia C, Hou Z Zhao X … Chang W (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18:309–315

    Google Scholar 

  • Peng L, Shikanai T (2011) Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol 155:1629–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16745–16754

    Article  CAS  PubMed  Google Scholar 

  • Petrasek Z, Schmitt FJ. Theiss C, Huyer J, Chen M, Larkum A Eichler HJ, …, Eckert H-J (2005) Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Photochem Photobiol Sci 4:1016–1022

    Google Scholar 

  • Pi X, Tian L, Dai HE, Qin X, Cheng L, Kuang T, Sui SF, Shen JR (2018) Unique organization of photosystem I-light harvesting supercomplex revealed by cryo-EM from a red alga. Proc Natl Acad Sci U S A 115:4423–4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M (2006) Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem 281:32705–32713

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen JR (2015) Structural basis for the energy transfer pathways in plant PSI-LHCI super-complex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Pi X, Wang W, Han G, Zhu L, Liu M Sui S-F, …, Shen J-R (2019) Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat Plants 5:263–272

    Google Scholar 

  • Reisinger V, Plöscher M, Eichacker L (2008) Lil3 assembles as chlorophyll-binding protein complex during deetiolation. FEBS letters 582:1547–1551. https://doi.org/10.1016/j.febslet.2008.03.042

    Article  CAS  PubMed  Google Scholar 

  • Rochaix JD (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581:2768–2775

    Article  CAS  PubMed  Google Scholar 

  • Rogl H, Lamborghini M, Kühlbrandt W (1998) Chlorophyll exchange on reconstituted LHCII: chlorophyll a is essential for trimerisation. In: Garab G (ed) Photosynthesis: Mechanisms and Effects: Vol I. Springer, Dordrecht, pp 361–364

    Chapter  Google Scholar 

  • Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV (2017) The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat Plants 3:16225

    Article  PubMed  CAS  Google Scholar 

  • Scheer H, Zhao KH (2008) Biliprotein maturation: the chromophore attachment. Mol Microbiol 68:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha RK, Komenda J, Knoppova J, Sedlarova M, Pospisil P (2012) Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Environ 35:806–818

    Article  CAS  PubMed  Google Scholar 

  • Stadnichuk IN, Krasilnikov PM, Zlenko DV (2015) Cyanobacterial phycobilisomes and phycobiliproteins. Microbiol 84:101–111

    Article  CAS  Google Scholar 

  • Staleva H, Komenda J, Shukla MK, Šlouf V, Kaňa R, Polívka T, Sobotka R (2015) Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat Chem Biol 11:287

    Article  CAS  PubMed  Google Scholar 

  • Standfuss J, Kuhlbrandt W (2004) The three isoforms of the light-harvesting complex II: spectroscopic features, trimer formation, and functional roles. J Biol Chem 279:36884–36891

    Article  CAS  PubMed  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kuhlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stawski K, Banach M, Goc A (2014) Expression patterns of convergently overlapping Arabidopsis thaliana gene pairs OHP-NDP1 and OHP2-MES14. Acta Biologica Cracoviensia 56:80–89

    Article  CAS  Google Scholar 

  • Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, …, Li M (2017) Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357:815–820

    Google Scholar 

  • Summerfield TC, Toepel J, Sherman LA (2008) Low-oxygen induction of normally cryptic psbA genes in cyanobacteria. Biochemistry 47:12939–12941

    Article  CAS  PubMed  Google Scholar 

  • Sunku K, de Groot HJM, Pandit A (2013) Insights into the photoprotective switch of the major light-harvesting complex II (LHCII): a preserved core of arginine-glutamate interlocked helices complemented by adjustable loops. J Biol Chem 288:19796–19804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka R, Rothbart M, Oka S, Takabayashi A, Takahashi K, Shibata M Myouga F, …, Tanaka A (2010) LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc Natl Acad Sci U S A 107:16721–16725

    Google Scholar 

  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth Res 76:193–205

    Article  PubMed  Google Scholar 

  • Theiss C, Schmitt FJ, Andree S, Cardenas-Chavez C, Wache K, Fuesers J, Vitali M, …, Eckert H-J (2008) Excitation energy transfer in the phycobiliprotein antenna of Acaryochloris marina studied by transient fs absorption and fluorescence spectroscopy. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis: Energy from the Sun. Springer, Dordrecht, pp 339–342

    Google Scholar 

  • Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M Olliges R, …, Eckert H-J (2011) Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J Plant Physiol 168:1473–1487

    Google Scholar 

  • Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142

    Article  CAS  PubMed  Google Scholar 

  • Tu CJ, Shrager J, Burnap RL, Postier BL, Grossman AR (2004) Consequences of a deletion in dspA on transcript accumulation in Synechocystis sp. strain PCC6803. J Bacteriol 186:3889–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • van Bezouwen LS, Caffarri S, Kale RS, Kouril R, Thunnissen AWH, Oostergetel GT, Boekema EJ (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat Plants 3:17080

    Article  PubMed  CAS  Google Scholar 

  • van der Weij-de Wit CD, Ihalainen JA, van de Vijver E, D’Haene S, Matthijs HCP, van Grondelle R, Dekker JP (2007) Fluorescence quenching of IsiA in early stage of iron deficiency and at cryogenic temperatures. Biochim Biophys Acta 1767:1393–1400

    Article  PubMed  CAS  Google Scholar 

  • Vinnemeier J, Hagemann M, Geiß U, Schoor A (2001) The iron-regulated isiA gene of Fischerella muscicola strain PCC 73103 is linked to a likewise regulated gene encoding a Pcb-like chlorophyll-binding protein. FEMS Microbiol Lett 197:123–129

    Article  PubMed  Google Scholar 

  • Wang Q, Hall CL, Al-Adami MZ, He Q (2010) IsiA is required for the formation of photosystem I supercomplexes and for efficient state transition in Synechocystis PCC 6803. PLoS One 5:e10432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534:69–74

    Google Scholar 

  • Wientjes E, Croce R (2011) The light-harvesting complexes of higher-plant photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem J 433:477–485

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Vavilin D, Funk C, Vermaas W (2004) Multiple deletions of small cab-like proteins in the cyanobacterium Synechocystis sp. PCC 6803: consequences for pigment biosynthesis and accumulation. J Biol Chem 279:27971–27979

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka G, Glazer AN, Williams RC (1978) Cyanobacterial phycobilisomes: characterization of the phycobilisomes of Synechococcus sp.6301. J Biol Chem 253:8303–8310

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Kieselbach T, Komenda J, Promnares K, Prieto MA, Tichy M Vermaas W, Funk C (2007) Localization of the small CAB-like proteins in photosystem II. J Biol Chem 282:267-276

    Google Scholar 

  • Zhang Y, Chen M, Zhou BB, Jermiin LS, Larkum AWD (2007) Evolution of the inner light-harvesting antenna protein family of cyanobacteria, algae, and plants. J Mol Evol 64:321–331

    Article  CAS  PubMed  Google Scholar 

  • Zhao KH, Su P, Böhm S, Song B, Zhou M, Bubenzer C, Scheer H (2005) Reconstitution of phycobilisome core–membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim Biophys Acta 1706:81–87

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409:739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel A. Hernández-Prieto or Min Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández-Prieto, M.A., Chen, M. (2021). Light Harvesting Modulation in Photosynthetic Organisms. In: Shen, JR., Satoh, K., Allakhverdiev, S.I. (eds) Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-67407-6_8

Download citation

Publish with us

Policies and ethics