Skip to main content
Log in

The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Overlapping restriction fragments of chloroplast DNA from the conifer Pinus contorta were cloned. Out of a total of 49 clones, 33 comprise the minimum set required to represent the entire genome. Using the purified inserts of these clones as probes in filter hybridizations, all sites for the three restriction enzymes KpnI, HapI and SacI in the P. contorta chloroplast genome were mapped. Heterologous filter hybridizations and sequence analysis of some of the P. contorta clones were used to determine the position of 15 genes on the restriction map. The size of the genome, which lacks an inverted repeat organization, was found to be approximately 121 kilobase pairs (kbp). Unusual features of this genome are a duplication of the psbA gene and the presence of two genes, gidA and frxC, which are not found in angiosperms. The genome appeared essentially colinear with that of Pinus radiata, for which a map has previously been published. Two different restriction fragment length polymorphisms were found to be produced by variable numbers of copies of 124 bp-and 150 bp-long, tandemly repeated elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J, Morris J, Westhoff P, Herrmann RG (1984) Curr Genet 8:597–606

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heynecker HL, Boyer HW, Crosa JH, Falkow S (1977) Gene 2:95–113

    Google Scholar 

  • Bonham-Smith PC, Bourque DP (1989) Nucleic Acids Res 17:2057–2080

    Google Scholar 

  • Dron M, Rahire M, Rochaix J-D (1982) J Mol Biol 162:775–793

    Google Scholar 

  • Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix J-D (1991) Cell 65:135–143

    Google Scholar 

  • Hanley-Bowdoin L, Chua N-H (1987) Trends Biochem Sci 12:67–70

    Google Scholar 

  • Herrmann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) FEBS Lett 176:239–244

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) Mol Gen Genet 217:185–194

    Google Scholar 

  • Knoll AH, Rothwell GW (1981) Paleobiology 7:7–35

    Google Scholar 

  • Lidholm J, Szmidt AE, Hällgren J-E, Gustafsson P (1988) Mol Gen Genet 212:6–10

    Google Scholar 

  • Lidholm J, Szmidt AE, Gustafsson P (1991) Mol Gen Genet (in press)

  • Morris J, Herrmann RG (1984) Nucleic Acids Res 12:2837–2850

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574

    Google Scholar 

  • Ohyama K, Kohchi T, Sano T, Yamada Y (1988) Trends Biochem Sci 13:19–22

    Google Scholar 

  • Palmer JD (1985) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Cell 29:537–550

    Google Scholar 

  • Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Ann Missouri Bot Gard 75:1180–1206

    Google Scholar 

  • Rochaix JD (1978) J Mol Biol 126:597–617

    Google Scholar 

  • Ruf M, Kössel H (1988) FEBS Lett 240:41–44

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakazugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Proc Natl Acad Sci USA 85:3898–3902

    Google Scholar 

  • Szmidt AE, Lidholm J, Hällgren J-E (1986) In: Lindgren D (ed) Provenances and forest tree breeding for high latitudes. Proceedings of the Frans Kempe symposium, Umeå, pp 269–280

  • Szmidt AE, El-Kassaby YA, Sigurgeirsson A, Aldén T, Lindgren D, Hällgren J-E (1988) Theor Appl Genet 76:841–845

    Google Scholar 

  • Takeshita S, Sato M, Toba M, Masahashi W, Hashimoto-Gotoh T (1987) Gene 61:63–74

    Google Scholar 

  • Tomioka N, Shinozaki K, Sugiura M (1981) Mol Gen Genet 184:359–363

    Google Scholar 

  • Umesono, K, Ozeki H (1987) Trends Genet 3:281–287

    Google Scholar 

  • Wagner DB, Furnier GR, Saghai-Marof MA, Williams SM, Dancik BP, Allard RW (1987) Proc Natl Acad Sci USA 84:2097–2100

    Google Scholar 

  • White EE (1990) Theor Appl Genet 79:119–124

    Google Scholar 

  • Vieira J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Wolfe KH, Sharp PM (1988) Gene 66:215–222

    Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989) Proc Natl Acad Sci USA 86:6201–6205

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  • Zurawski G, Clegg MT (1987) Annu Rev Plant Physiol 38:391–418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Kössel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidholm, J., Gustafsson, P. The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones. Curr Genet 20, 161–166 (1991). https://doi.org/10.1007/BF00312780

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312780

Key words

Navigation