Skip to main content

Role of Radiological Assessment and Intervention in Pediatric Dialysis

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

Children on hemodialysis or peritoneal dialysis frequently need radiological assessment of dialysis access placement and patency. In many cases, radiological interventions can assist with the creation and maintenance of dialysis access. For these purposes, contrast media facilitate the interpretation of medical imaging by increasing the differences seen between body tissues displayed on the images. The contrast media used in diagnostic imaging and interventions have evolved over the decades. This chapter discusses the different roles that radiologic assessment and interventions, via contrast agents, play in dialysis, along with the current challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR:

American College of Radiology

CAPD:

Continuous ambulatory peritoneal dialysis

CIN:

Contrast-induced nephropathy

CT:

Computed tomography

ESRD:

End-stage renal disease

GBCA:

Gadolinium-based contrast agents

Gd:

Gadolinium

GFR:

Glomerular filtration rate

HD:

Hemodialysis

HOCM:

High-osmolar contrast media

IOCM:

Iso-osmolar contrast media

LOCM:

Low-osmolar contrast media

MRI:

Magnetic resonance imaging

NSF:

Nephrogenic systemic fibrosis

PD:

Peritoneal dialysis

References

  1. Zandieh S, Muin D, Bernt R, Krenn-List P, Mirzaei S, Haller J. Radiological diagnosis of dialysis-associated complications. Insights Imaging. 2014;5(5):603–17.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bahrainwala JZ, Leonberg-Yoo AK, Rudnick MR. Use of radiocontrast agents in CKD and ESRD. Semin Dial. 2017;30(4):290–304.

    Article  PubMed  Google Scholar 

  3. Wang CL, Cohan RH, Ellis JH, Caoili EM, Wang G, Francis IR. Frequency, outcome, and appropriateness of treatment of nonionic iodinated contrast media reactions. AJR Am J Roentgenol. 2008;191(2):409–15.

    Article  PubMed  Google Scholar 

  4. Masch WR, Wang CL, Davenport MS. Severe allergic-like contrast reactions: epidemiology and appropriate treatment. Abdom Radiol (NY). 2016;41(8):1632–9.

    Article  Google Scholar 

  5. Jung JW, Kang HR, Kim MH, Lee W, Min KU, Han MH, Cho SH. Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology. 2012;264(2):414–22.

    Article  PubMed  Google Scholar 

  6. Faucon AL, Bobrie G, Clement O. Nephrotoxicity of iodinated contrast media: from pathophysiology to prevention strategies. Eur J Radiol. 2019;

    Google Scholar 

  7. Nouh MR, El-Shazly MA. Radiographic and magnetic resonances contrast agents: essentials and tips for safe practices. World J Radiol. 2017;9(9):339–49.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Almen T. Visipaque–a step forward. A historical review. Acta Radiol Suppl. 1995;399:2–18.

    Article  CAS  PubMed  Google Scholar 

  9. Katzberg RW. New and old contrast agents: physiology and nephrotoxicity. Urol Radiol. 1988;10(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  10. McClennan BL. Ionic versus nonionic contrast media: safety, tolerance, and rationale for use. Urol Radiol. 1989;11(4):200–2.

    Article  CAS  PubMed  Google Scholar 

  11. Morris TW. X-ray contrast media: where are we now, and where are we going? Radiology. 1993;188(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  12. Media ACoDaC. ACR manual on contrast media. Reston, VA: American College of Radiology; 2018.

    Google Scholar 

  13. Dean PB, Kivisaari L, Kormano M. Contrast enhancement pharmacokinetics of six ionic and nonionic contrast media. Investig Radiol. 1983;18(4):368–74.

    Article  CAS  Google Scholar 

  14. Eloy R, Corot C, Belleville J. Contrast media for angiography: physicochemical properties, pharmacokinetics and biocompatibility. Clin Mater. 1991;7(2):89–197.

    Article  CAS  PubMed  Google Scholar 

  15. Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Phys. 1972;223(2):323–31.

    Article  CAS  Google Scholar 

  16. Rapoport SI, Levitan H. Neurotoxicity of X-ray contrast media. Relation to lipid solubility and blood-brain barrier permeability. Am J Roentgenol Radium Therapy, Nucl Med. 1974;122(1):186–93.

    Article  CAS  Google Scholar 

  17. Blaufox MD, Sanderson DR, Tauxe WN, Wakim KG, Orvis AL, Owen CA Jr. Plasmatic diatrizoate-I-131 disappearance and glomerular filtration in the dog. Am J Phys. 1963;204:536–40.

    Article  CAS  Google Scholar 

  18. Donaldson IM. Comparison of the renal clearances of inulin and radioactive diatrizoate ("Hypaque") as measures of the glomerular filtration rate in man. Clin Sci. 1968;35(3):513–24.

    CAS  PubMed  Google Scholar 

  19. Mudge GH. The maximal urinary concentration of diatrizoate. Investig Radiol. 1980;15(6 Suppl):S67–78.

    Article  CAS  Google Scholar 

  20. Katzberg RW, Pabico RC, Morris TW, Hayakawa K, McKenna BA, Panner BJ, Ventura JA, Fischer HW. Effects of contrast media on renal function and subcellular morphology in the dog. Investig Radiol. 1986;21(1):64–70.

    Article  CAS  Google Scholar 

  21. Katzberg RW, Schulman G, Meggs LG, Caldicott WJ, Damiano MM, Hollenberg NK. Mechanism of the renal response to contrast medium in dogs. Decrease in renal function due to hypertonicity. Investig Radiol. 1983;18(1):74–80.

    Article  CAS  Google Scholar 

  22. Katzberg RW, Donahue LA, Morris TW, Ventura JA, Krutchen AE, Proskin HM, Sovak M, Cos LR. Ioxilan, a third generation low osmolality nonionic contrast medium. Systemic and renal hemodynamic effects. Investig Radiol. 1990;25(1):46–51.

    Article  CAS  Google Scholar 

  23. Nordby A, Tvedt KE, Halgunset J, Haugen OA. Intracellular penetration and accumulation of radiographic contrast media in the rat kidney. Scanning Microsc. 1990;4(3):651–64. discussion 64-6

    CAS  PubMed  Google Scholar 

  24. Lorusso V, Taroni P, Alvino S, Spinazzi A. Pharmacokinetics and safety of iomeprol in healthy volunteers and in patients with renal impairment or end-stage renal disease requiring hemodialysis. Investig Radiol. 2001;36(6):309–16.

    Article  CAS  Google Scholar 

  25. Katzberg RW. Contrast medium-induced nephrotoxicity: which pathway? Radiology. 2005;235(3):752–5.

    Article  PubMed  Google Scholar 

  26. Persson PB, Tepel M. Contrast medium-induced nephropathy: the pathophysiology. Kidney Int Suppl. 2006;100:S8–10.

    Article  CAS  Google Scholar 

  27. Liss P, Nygren A, Erikson U, Ulfendahl HR. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla. Kidney Int. 1998;53(3):698–702.

    Article  CAS  PubMed  Google Scholar 

  28. Ueda J, Nygren A, Hansell P, Erikson U. Influence of contrast media on single nephron glomerular filtration rate in rat kidney. A comparison between diatrizoate, iohexol, ioxaglate, and iotrolan. Acta Radiol. 1992;33(6):596–9.

    CAS  PubMed  Google Scholar 

  29. Hardiek K, Katholi RE, Ramkumar V, Deitrick C. Proximal tubule cell response to radiographic contrast media. Am J Physiol Renal Physiol. 2001;280(1):F61–70.

    Article  CAS  PubMed  Google Scholar 

  30. Hizoh I, Strater J, Schick CS, Kubler W, Haller C. Radiocontrast-induced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity. Nephrol Dial Transpl. 1998;13(4):911–8.

    Article  CAS  Google Scholar 

  31. Heinrich MC, Kuhlmann MK, Grgic A, Heckmann M, Kramann B, Uder M. Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro. Radiology. 2005;235(3):843–9.

    Article  PubMed  Google Scholar 

  32. Heydenreich G, Larsen PO. Iododerma after high dose urography in an oliguric patient. Br J Dermatol. 1977;97(5):567–9.

    Article  CAS  PubMed  Google Scholar 

  33. Goodfellow T, Holdstock GE, Brunton FJ, Bamforth J. Fatal acute vasculitis after high-dose urography with iohexol. Br J Radiol. 1986;59(702):620–1.

    Article  CAS  PubMed  Google Scholar 

  34. Rivera M, Teruel JL, Castano JC, Garcia Otero G, Ortuno J. Iodine-induced sialadenitis: report of 4 cases and review of the literature. Nephron. 1993;63(4):466–7.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang G, Li T, Wang H, Liu J. The pathogenesis of iodide mumps: a case report. Medicine (Baltimore). 2017;96(47):e8881.

    Article  Google Scholar 

  36. Younathan CM, Kaude JV, Cook MD, Shaw GS, Peterson JC. Dialysis is not indicated immediately after administration of nonionic contrast agents in patients with end-stage renal disease treated by maintenance dialysis. AJR Am J Roentgenol. 1994;163(4):969–71.

    Article  CAS  PubMed  Google Scholar 

  37. Hamani A, Petitclerc T, Jacobs C, Deray G. Is dialysis indicated immediately after administration of iodinated contrast agents in patients on haemodialysis? Nephrol Dial Transpl. 1998;13(4):1051–2.

    Article  CAS  Google Scholar 

  38. Harasawa H, Yamazaki C, Masuko K. Side effects and pharmacokinetics of nonionic iodinated contrast medium in hemodialyzed patients. Nihon Igaku Hoshasen Gakkai Zasshi. 1990;50(12):1524–31.

    CAS  PubMed  Google Scholar 

  39. Horiuchi K, Yoshida K, Tsuboi N, Akimoto M, Tajima H, Kumazaki T. Elimination of non-ionic contrast medium by hemodialysis in patients with impaired renal function. Nihon Ika Daigaku Zasshi. 1999;66(5):305–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kierdorf H, Kindler J, Winterscheid R, Hollmann HJ, Vorwerk D, Speck U. Elimination of the nonionic contrast medium iopromide in end-stage renal failure by hemodialysis. Fortschr Geb Rontgenstrahlen Nuklearmed Erganzungsbd. 1989;128:119–23.

    CAS  PubMed  Google Scholar 

  41. Matzkies FK, Reinecke H, Tombach B, Kosch M, Hegger K, Milius M, Hohage H, Kisters K, Kerber S, Schaefer RM. Influence of dialysis procedure, membrane surface and membrane material on iopromide elimination in patients with reduced kidney function. Am J Nephrol. 2000;20(4):300–4.

    Article  CAS  PubMed  Google Scholar 

  42. Matzkies FK, Tombach B, Kisters K, Schuhmann G, Hohage H, Schaefer RM. Clearance of iopromide during haemodialysis with high- and low-flux membranes. Acta Radiol. 1999;40(2):220–3.

    Article  CAS  PubMed  Google Scholar 

  43. Moon SS, Back SE, Kurkus J, Nilsson-Ehle P. Hemodialysis for elimination of the nonionic contrast medium iohexol after angiography in patients with impaired renal function. Nephron. 1995;70(4):430–7.

    Article  CAS  PubMed  Google Scholar 

  44. Schindler R, Stahl C, Venz S, Ludat K, Krause W, Frei U. Removal of contrast media by different extracorporeal treatments. Nephrol Dial Transpl. 2001;16(7):1471–4.

    Article  CAS  Google Scholar 

  45. Sterner G, Frennby B, Mansson S, Ohlsson A, Prutz KG, Almen T. Assessing residual renal function and efficiency of hemodialysis–an application for urographic contrast media. Nephron. 2000;85(4):324–33.

    Article  CAS  PubMed  Google Scholar 

  46. Teraoka T, Sugai T, Nakamura S, Hirasawa H, Oda S, Shiga H, Suga M, Yamane S, Ishii H, Yamagata S, Satoh N, Ueda S. Prediction of iopromide reduction rates during haemodialysis using an in vitro dialysis system. Nephrol Dial Transpl. 2005;20(4):754–9.

    Article  CAS  Google Scholar 

  47. Ueda J, Furukawa T, Higashino K, Takahashi S, Araki Y, Sakaguchi K. Elimination of iomeprol by hemodialysis. Eur J Radiol. 1996;23(3):197–200.

    Article  CAS  PubMed  Google Scholar 

  48. Ueda J, Furukawa T, Takahashi S, Sakaguchi K. Elimination of ioversol by hemodialysis. Acta Radiol. 1996;37(5):826–9.

    Article  CAS  PubMed  Google Scholar 

  49. Waaler A, Svaland M, Fauchald P, Jakobsen JA, Kolmannskog F, Berg KJ. Elimination of iohexol, a low osmolar nonionic contrast medium, by hemodialysis in patients with chronic renal failure. Nephron. 1990;56(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  50. Johnsson E, Attman PO, Samuelsson O, Haraldsson B. Improved clearance of iohexol with longer haemodialysis despite similar Kt/V for urea. Nephrol Dial Transpl. 1999;14(10):2407–12.

    Article  CAS  Google Scholar 

  51. Donnelly PK, Burwell N, McBurney A, Ward JW, Walls J, Watkin EM. Clearance of iopamidol, a non-ionic contrast medium, by CAPD in patients with end-stage renal failure. Br J Radiol. 1992;65(780):1108–13.

    Article  CAS  PubMed  Google Scholar 

  52. Iwamoto M, Hiroshige K, Suda T, Ohta T, Ohtani A, Nakashima Y. Elimination of iomeprol in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int. 1999;19(4):380–5.

    Article  CAS  PubMed  Google Scholar 

  53. Lehnert T, Keller E, Gondolf K, Schaffner T, Pavenstadt H, Schollmeyer P. Effect of haemodialysis after contrast medium administration in patients with renal insufficiency. Nephrol Dial Transpl. 1998;13(2):358–62.

    Article  CAS  Google Scholar 

  54. Vogt B, Ferrari P, Schonholzer C, Marti HP, Mohaupt M, Wiederkehr M, Cereghetti C, Serra A, Huynh-Do U, Uehlinger D, Frey FJ. Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful. Am J Med. 2001;111(9):692–8.

    Article  CAS  PubMed  Google Scholar 

  55. Frank H, Werner D, Lorusso V, Klinghammer L, Daniel WG, Kunzendorf U, Ludwig J. Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced nephropathy in chronic renal failure. Clin Nephrol. 2003;60(3):176–82.

    Article  CAS  PubMed  Google Scholar 

  56. Marenzi G, Marana I, Lauri G, Assanelli E, Grazi M, Campodonico J, Trabattoni D, Fabbiocchi F, Montorsi P, Bartorelli AL. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med. 2003;349(14):1333–40.

    Article  CAS  PubMed  Google Scholar 

  57. Marenzi G, Lauri G, Campodonico J, Marana I, Assanelli E, De Metrio M, Grazi M, Veglia F, Fabbiocchi F, Montorsi P, Bartorelli AL. Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am J Med. 2006;119(2):155–62.

    Article  PubMed  Google Scholar 

  58. Hawkins IF Jr, Mladinich CR, Storm B, Croker BP, Wilcox CS, Akins EW, Drake W. Short-term effects of selective renal arterial carbon dioxide administration on the dog kidney. J Vasc Interv Radiol. 1994;5(1):149–54.

    Article  PubMed  Google Scholar 

  59. Palm F, Bergqvist D, Carlsson PO, Hellberg O, Nyman R, Hansell P, Liss P. The effects of carbon dioxide versus ioxaglate in the rat kidney. J Vasc Interv Radiol. 2005;16(2 Pt 1):269–74.

    Article  PubMed  Google Scholar 

  60. Shifrin EG, Plich MB, Verstandig AG, Gomori M. Cerebral angiography with gaseous carbon dioxide CO2. J Cardiovasc Surg. 1990;31(5):603–6.

    CAS  Google Scholar 

  61. Dimakakos PB, Stefanopoulos T, Doufas AG, Papasava M, Gouliamos A, Mourikis D, Deligiorgi H. The cerebral effects of carbon dioxide during digital subtraction angiography in the aortic arch and its branches in rabbits. AJNR Am J Neuroradiol. 1998;19(2):261–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hawkins IF, Cho KJ, Caridi JG. Carbon dioxide in angiography to reduce the risk of contrast-induced nephropathy. Radiol Clin N Am. 2009;47(5):813–25. v-vi

    Article  PubMed  Google Scholar 

  63. McCullough BJ, Kolokythas O, Maki JH, Green DE. Ferumoxytol in clinical practice: implications for MRI. J Magn Reson Imaging. 2013;37(6):1476–9.

    Article  PubMed  Google Scholar 

  64. Kramer JH, Grist TM. Peripheral MR angiography. Magn Reson Imaging Clin N Am. 2012;20(4):761–76.

    Article  PubMed  Google Scholar 

  65. Pouliquen D, Le Jeune JJ, Perdrisot R, Ermias A, Jallet P. Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging. 1991;9(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  66. Ruangwattanapaisarn N, Hsiao A, Vasanawala SS. Ferumoxytol as an off-label contrast agent in body 3T MR angiography: a pilot study in children. Pediatr Radiol. 2015;45(6):831–9.

    Article  PubMed  Google Scholar 

  67. Kim HK, Lee GH, Chang Y. Gadolinium as an MRI contrast agent. Future Med Chem. 2018;10(6):639–61.

    Article  CAS  PubMed  Google Scholar 

  68. Lorusso V, Pascolo L, Fernetti C, Anelli PL, Uggeri F, Tiribelli C. Magnetic resonance contrast agents: from the bench to the patient. Curr Pharm Des. 2005;11(31):4079–98.

    Article  CAS  PubMed  Google Scholar 

  69. Swan SK, Lambrecht LJ, Townsend R, Davies BE, McCloud S, Parker JR, Bensel K, LaFrance ND. Safety and pharmacokinetic profile of gadobenate dimeglumine in subjects with renal impairment. Investig Radiol. 1999;34(7):443–8.

    Article  CAS  Google Scholar 

  70. Hunt CH, Hartman RP, Hesley GK. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR Am J Roentgenol. 2009;193(4):1124–7.

    Article  PubMed  Google Scholar 

  71. Murphy KJ, Brunberg JA, Cohan RH. Adverse reactions to gadolinium contrast media: a review of 36 cases. AJR Am J Roentgenol. 1996;167(4):847–9.

    Article  CAS  PubMed  Google Scholar 

  72. Prince MR, Erel HE, Lent RW, Blumenfeld J, Kent KC, Bush HL, Wang Y. Gadodiamide administration causes spurious hypocalcemia. Radiology. 2003;227(3):639–46.

    Article  PubMed  Google Scholar 

  73. Emerson J, Kost G. Spurious hypocalcemia after Omniscan- or OptiMARK-enhanced magnetic resonance imaging: an algorithm for minimizing a false-positive laboratory value. Arch Pathol Lab Med. 2004;128(10):1151–6.

    Article  CAS  PubMed  Google Scholar 

  74. Niendorf HP, Alhassan A, Geens VR, Clauss W. Safety review of gadopentetate dimeglumine. Extended clinical experience after more than five million applications. Invest Radiol. 1994;29 Suppl 2:S179–82.

    Article  CAS  PubMed  Google Scholar 

  75. Arsenault TM, King BF, Marsh JW Jr, Goodman JA, Weaver AL, Wood CP, Ehman RL. Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc. 1996;71(12):1150–4.

    Article  CAS  PubMed  Google Scholar 

  76. Erley CM, Bader BD, Berger ED, Tuncel N, Winkler S, Tepe G, Risler T, Duda S. Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrol Dial Transpl. 2004;19(10):2526–31.

    Article  CAS  Google Scholar 

  77. Ergun I, Keven K, Uruc I, Ekmekci Y, Canbakan B, Erden I, Karatan O. The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transpl. 2006;21(3):697–700.

    Article  CAS  Google Scholar 

  78. Sam AD 2nd, Morasch MD, Collins J, Song G, Chen R, Pereles FS. Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg. 2003;38(2):313–8.

    Article  PubMed  Google Scholar 

  79. Kane GC, Stanson AW, Kalnicka D, Rosenthal DW, Lee CU, Textor SC, Garovic VD. Comparison between gadolinium and iodine contrast for percutaneous intervention in atherosclerotic renal artery stenosis: clinical outcomes. Nephrol Dial Transpl. 2008;23(4):1233–40.

    Article  CAS  Google Scholar 

  80. Rodby RA. Dialytic therapies to prevent NSF following gadolinium exposure in high-risk patients. Semin Dial. 2008;21(2):145–9.

    Article  PubMed  Google Scholar 

  81. Okada S, Katagiri K, Kumazaki T, Yokoyama H. Safety of gadolinium contrast agent in hemodialysis patients. Acta Radiol. 2001;42(3):339–41.

    Article  CAS  PubMed  Google Scholar 

  82. Saitoh T, Hayasaka K, Tanaka Y, Kuno T, Nagura Y. Dialyzability of gadodiamide in hemodialysis patients. Radiat Med. 2006;24(6):445–51.

    Article  CAS  PubMed  Google Scholar 

  83. Ueda J, Furukawa T, Higashino K, Yamamoto T, Ujita H, Sakaguchi K, Araki Y. Permeability of iodinated and MR contrast media through two types of hemodialysis membrane. Eur J Radiol. 1999;31(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  84. Joffe P, Thomsen HS, Meusel M. Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol. 1998;5(7):491–502.

    Article  CAS  PubMed  Google Scholar 

  85. Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356(9234):1000–1.

    Article  CAS  PubMed  Google Scholar 

  86. Cowper SE, Su LD, Bhawan J, Robin HS, LeBoit PE. Nephrogenic fibrosing dermopathy. Am J Dermatopathol. 2001;23(5):383–93.

    Article  CAS  PubMed  Google Scholar 

  87. Baron PW, Cantos K, Hillebrand DJ, Hu KQ, Ojogho ON, Nehlsen-Cannarella S, Concepcion W. Nephrogenic fibrosing dermopathy after liver transplantation successfully treated with plasmapheresis. Am J Dermatopathol. 2003;25(3):204–9.

    Article  PubMed  Google Scholar 

  88. Dharnidharka VR, Wesson SK, Fennell RS. Gadolinium and nephrogenic fibrosing dermopathy in pediatric patients. Pediatr Nephrol. 2007;22(9):1395.

    Article  PubMed  Google Scholar 

  89. Jain SM, Wesson S, Hassanein A, Canova E, Hoy M, Fennell RS, Dharnidharka VR. Nephrogenic fibrosing dermopathy in pediatric patients. Pediatr Nephrol. 2004;19(4):467–70.

    Article  PubMed  Google Scholar 

  90. Mackay-Wiggan JM, Cohen DJ, Hardy MA, Knobler EH, Grossman ME. Nephrogenic fibrosing dermopathy (scleromyxedema-like illness of renal disease). J Am Acad Dermatol. 2003;48(1):55–60.

    Article  PubMed  Google Scholar 

  91. Perazella MA, Ishibe S, Reilly RF. Nephrogenic fibrosing dermopathy: an unusual skin condition associated with kidney disease. Semin Dial. 2003;16(3):276–80.

    Article  PubMed  Google Scholar 

  92. Streams BN, Liu V, Liegeois N, Moschella SM. Clinical and pathologic features of nephrogenic fibrosing dermopathy: a report of two cases. J Am Acad Dermatol. 2003;48(1):42–7.

    Article  PubMed  Google Scholar 

  93. Swartz RD, Crofford LJ, Phan SH, Ike RW, Su LD. Nephrogenic fibrosing dermopathy: a novel cutaneous fibrosing disorder in patients with renal failure. Am J Med. 2003;114(7):563–72.

    Article  PubMed  Google Scholar 

  94. Grobner T. Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transpl. 2006;21(4):1104–8.

    Article  CAS  Google Scholar 

  95. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62.

    Article  PubMed  Google Scholar 

  96. High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56(1):21–6.

    Article  PubMed  Google Scholar 

  97. Thakral C, Abraham JL. Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: in vivo transmetallation confirmed by microanalysis. J Cutan Pathol. 2009;36(12):1244–54.

    Article  PubMed  Google Scholar 

  98. Penfield JG, Reilly RF. Nephrogenic systemic fibrosis risk: is there a difference between gadolinium-based contrast agents? Semin Dial. 2008;21(2):129–34.

    Article  PubMed  Google Scholar 

  99. Penfield JG. Nephrogenic systemic fibrosis and the use of gadolinium-based contrast agents. Pediatr Nephrol. 2008;23(12):2121–9.

    Article  PubMed  Google Scholar 

  100. Auron A, Shao L, Warady BA. Nephrogenic fibrosing dermopathy in children. Pediatr Nephrol. 2006;21(9):1307–11.

    Article  PubMed  Google Scholar 

  101. DiCarlo JB, Gupta EA, Solomon AR. A pediatric case of nephrogenic fibrosing dermopathy: improvement after combination therapy. J Am Acad Dermatol. 2006;54(5):914–6.

    Article  PubMed  Google Scholar 

  102. Jan F, Segal JM, Dyer J, LeBoit P, Siegfried E, Frieden IJ. Nephrogenic fibrosing dermopathy: two pediatric cases. J Pediatr. 2003;143(5):678–81.

    Article  PubMed  Google Scholar 

  103. Nardone B, Saddleton E, Laumann AE, Edwards BJ, Raisch DW, McKoy JM, Belknap SM, Bull C, Haryani A, Cowper SE, Abu-Alfa AK, Miller FH, Godinez-Puig V, Dharnidharka VR, West DP. Pediatric nephrogenic systemic fibrosis is rarely reported: a RADAR report. Pediatr Radiol. 2014;44(2):173–80.

    Article  PubMed  Google Scholar 

  104. Karcaaltincaba M, Oguz B, Haliloglu M. Current status of contrast-induced nephropathy and nephrogenic systemic fibrosis in children. Pediatr Radiol. 2009;39(Suppl 3):382–4.

    Article  PubMed  Google Scholar 

  105. Steen H, Schwenger V. Good MRI images: to gad or not to gad? Pediatr Nephrol. 2007;22(9):1239–42.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vascular Access Work G. Clinical practice guidelines for vascular access. Am J Kidney Dis. 2006;48 Suppl 1:S248–73.

    Google Scholar 

  107. Chick JF, Reddy SN, Yam BL, Kobrin S, Trerotola SO. Institution of a hospital-based central venous access policy for peripheral vein preservation in patients with chronic kidney disease: a 12-year experience. J Vasc Interv Radiol. 2017;28(3):392–7.

    Article  PubMed  Google Scholar 

  108. Araujo C, Silva JP, Antunes P, Fernandes JM, Dias C, Pereira H, Dias T, Fougo JL. A comparative study between two central veins for the introduction of totally implantable venous access devices in 1201 cancer patients. Eur J Surg Oncol. 2008;34(2):222–6.

    Article  CAS  PubMed  Google Scholar 

  109. Itoga NK, Ullery BW, Tran K, Lee GK, Aalami OO, Bech FR, Zhou W. Use of a proactive duplex ultrasound protocol for hemodialysis access. J Vasc Surg. 2016;64(4):1042–9 e1.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Neuen BL, Gunnarsson R, Webster AC, Baer RA, Golledge J, Mantha ML. Predictors of patency after balloon angioplasty in hemodialysis fistulas: a systematic review. J Vasc Interv Radiol. 2014;25(6):917–24.

    Article  PubMed  Google Scholar 

  111. Bautista AB, Suhocki PV, Pabon-Ramos WM, Miller MJ Jr, Smith TP, Kim CY. Postintervention patency rates and predictors of patency after percutaneous interventions on intragraft stenoses within failing prosthetic arteriovenous grafts. J Vasc Interv Radiol. 2015;26(11):1673–9.

    Article  PubMed  Google Scholar 

  112. Gogalniceanu P, Stuart S, Karunanithy N, Kessaris N, Roebuck D, Calder F. Endovascular intervention in the maintenance and rescue of paediatric arteriovenous fistulae for hemodialysis. Pediatr Nephrol. 2019;34(4):723–7.

    Article  PubMed  Google Scholar 

  113. Hadziomerovic A, Hirji Z, Coffey N. Modified inside-out technique for continued use of chronically occluded upper central veins. J Vasc Interv Radiol. 2017;28(5):757–61.

    Article  PubMed  Google Scholar 

  114. Keller EJ, Gupta SA, Bondarev S, Sato KT, Vogelzang RL, Resnick SA. Single-center retrospective review of radiofrequency wire recanalization of refractory central venous occlusions. J Vasc Interv Radiol. 2018;29(11):1571–7.

    Article  PubMed  Google Scholar 

  115. Levine E, Slusher SL, Grantham JJ, Wetzel LH. Natural history of acquired renal cystic disease in dialysis patients: a prospective longitudinal CT study. AJR Am J Roentgenol. 1991;156(3):501–6.

    Article  CAS  PubMed  Google Scholar 

  116. Chan EYH, Warady BA. Acquired cystic kidney disease: an under-recognized condition in children with end-stage renal disease. Pediatr Nephrol. 2018;33(1):41–51.

    Article  PubMed  Google Scholar 

  117. Narasimhan N, Golper TA, Wolfson M, Rahatzad M, Bennett WM. Clinical characteristics and diagnostic considerations in acquired renal cystic disease. Kidney Int. 1986;30(5):748–52.

    Article  CAS  PubMed  Google Scholar 

  118. Matson MA, Cohen EP. Acquired cystic kidney disease: occurrence, prevalence, and renal cancers. Medicine (Baltimore). 1990;69(4):217–26.

    Article  CAS  Google Scholar 

  119. Farivar-Mohseni H, Perlmutter AE, Wilson S, Shingleton WB, Bigler SA, Fowler JE Jr. Renal cell carcinoma and end stage renal disease. J Urol. 2006;175(6):2018–20; discussion 21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas R. Dharnidharka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dharnidharka, V.R., Rivard, D.C. (2021). Role of Radiological Assessment and Intervention in Pediatric Dialysis. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics