Skip to main content

Biosensors Utilizing Non-Michaelis–Menten Kinetics

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 417 Accesses

Abstract

The action of biosensors utilizing non-Michaelis–Menten kinetics is modeled at mixed enzyme kinetics and diffusion limitation in the cases of substrate and reaction product inhibition as well as of allostery at steady state and transient conditions. Computational modeling of the substrate inhibition at steady state shows multi-steady state concentrations of the substrate at the surface of the enzyme layer (membrane) when the diffusion module is much larger than one and the substrate bulk concentration is much higher than Michaelis–Menten constant. The multi-steady state concentration generates multi-response of the biosensor. At transient conditions, analytical systems are modeled by a two-compartment model comprising a mono-enzyme layer and an external Nernst diffusion layer. The complex enzyme kinetics produces different calibration curves for the response at the transition and the steady state. The cooperative phenomena of allosteric enzymes are modeled by applying the substrate uptake and the Hill equations. The positive cooperativity leads to a steady state current less than that when the biosensor action obeys the Michaelis–Menten kinetics, while negative cooperativity leads to increasing the biosensor response. The substrate concentration, at which the saturation curves of allosteric biosensors intersect, increases with increasing the external diffusion limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achi F, Bourouina-Bacha S, Bourouina M, Amine A (2015) Mathematical model and numerical simulation of inhibition based biosensor for the detection of Hg(II). Sens Actuator B Chem 207(A):413–423

    Article  Google Scholar 

  2. AL-Muftah AE, Abu-Reesh IM (2005) Effects of simultaneous internal and external mass transfer and product inhibition on immobilized enzyme-catalysed reactor. Biochem Eng J 27(2):167–178

    Google Scholar 

  3. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: the theory of the steady state. Oxford Studies in Physics, vol 1. Oxford University Press, Oxford

    Google Scholar 

  4. Baronas R (2017) Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochim Acta 240:399–407

    Article  Google Scholar 

  5. Baronas R, Žilinskas A, Litvinas L (2016) Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization. Electrochim Acta 211:586–594

    Article  Google Scholar 

  6. Bartlett P, Whitaker R (1987) Electrochemical immobilisation of enzymes: Part 1. Theory. J Electroanal Chem 224:27–35

    Article  Google Scholar 

  7. Bisswanger H (2008) Enzyme kinetics: principles and methods, 2nd edn. Wiley-Blackwell, Weinheim

    Book  Google Scholar 

  8. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry. Monographs in Electrochemistry, 4th edn. Springer, Cham

    Google Scholar 

  9. Buerk D (1995) Biosensors: theory and applications. CRC Press, Lancaster

    Google Scholar 

  10. Cattoni DI, Chara O, Kaufman SB, Flecha FLG (2015) Cooperativity in binding processes: new insights from phenomenological modeling. PLoS ONE 10(12):e0146043

    Article  Google Scholar 

  11. Changeux JP (2012) Allostery and the Monod-Wyman-Changeux model after 50 years. Annu Rev Biophys 41:103–133

    Article  Google Scholar 

  12. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17(6):441–456

    Article  Google Scholar 

  13. Ciliberto A, Capuani F, Tyson JJ (2007) Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput Biol 3(3):e45

    Article  MathSciNet  Google Scholar 

  14. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  15. Cornish-Bowden A (2014) Understanding allosteric and cooperative interactions in enzymes. FEBS J 281(2):321–632

    Article  Google Scholar 

  16. Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55(1):170–171

    Article  Google Scholar 

  17. Dixon M, Webb E, Thorne C, Tipton K (1979) Enzymes, 3rd edn. Longman, London

    Google Scholar 

  18. Doran PM (2013) Bioprocess engineering principles, 2nd edn. Academic, Waltham

    Google Scholar 

  19. Einav T, Mazutis L, Phillips R (2016) Statistical mechanics of allosteric enzymes. J Phys Chem B 120(26):6021–6037

    Article  Google Scholar 

  20. Goeke A, Schilli C, Walcher S, Zerz E (2012) Computing quasi-steady state reductions. J Math Chem 50(6):1495–1513

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldbeter A (2013) Oscillatory enzyme reactions and Michaelis–Menten kinetics. FEBS Lett 587(17):2778–2784

    Article  Google Scholar 

  22. Gunawardena J (2014) Time-scale separation: Michaelis and Menten’s old idea, still bearing fruit. FEBS J 281(2):473–488

    Article  Google Scholar 

  23. Gusakov AV, Sinitsyn AP (1992) A theoretical analysis of cellulase product inhibition: effect of cellulase binding constant, enzyme/substrate ratio, and β-glucosidase activity on the inhibition pattern. Biotechnol Bioeng 40(6):663–671

    Article  Google Scholar 

  24. Gutfreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Hammes GG, Wu CW (1974) Kinetics of allosteric enzymes. Annu Rev Biophys Bioeng 3:1–33

    Article  Google Scholar 

  26. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1982) Symbolism and terminology in enzyme kinetics. Recommendations 1981. Eur J Biochem 128:281–291

    Google Scholar 

  27. Juška A (2008) Minimal models of multi-site ligand-binding kinetics. J Theor Biol 255(4):396–403

    Article  MATH  Google Scholar 

  28. Kærn M, Hunding A (1999) The effect of slow allosteric transitions in a coupled biochemical oscillator model. J Theor Biol 198(2):269–281

    Article  Google Scholar 

  29. Kernevez J (1980) Enzyme mathematics. Studies in Mathematics and its Applications. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  30. Kinoshita A, Tsukada K, Soga T, Hishiki T, Ueno Y, Nakayama Y, Tomita M, Suematsu M (2007) Roles of hemoglobin allostery in hypoxia-induced metabolic alterations in erythrocytes – simulation and its verification by metabolome analysis. J Biol Chem 282(14):10731–10741

    Article  Google Scholar 

  31. Kulys J (2006) Biosensor response at mixed enzyme kinetics and external diffusion limitation in case of substrate inhibition. Nonlinear Anal Model Control 11(4):385–392

    MATH  Google Scholar 

  32. Kulys J, Baronas R (2006) Modelling of amperometric biosensors in the case of substrate inhibition. Sensors 6(11):1513–1522

    Article  Google Scholar 

  33. Kurganov BI (1982) Allosteric enzymes: kinetic behaviour. Wiley, New York

    Google Scholar 

  34. Li B, Shen Y, Li B (2008) Quasi-steady-state laws in enzyme kinetics. J Phys Chem A 112(11):2311–2321

    Article  Google Scholar 

  35. Lin SKC, Du C, Koutinas A, Wang R (2008) ColinWebb: substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem Eng J 41(2):128–135

    Article  Google Scholar 

  36. Malhotra BD, Pandey CM (2017) Biosensors: fundamentals and applications. Smithers Rapra, Shawbury

    Google Scholar 

  37. Manimozhi P, Subbiah A, Rajendran L (2010) Solution of steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics. Sensor Actuat B-Chem 147(1):290–297

    Article  Google Scholar 

  38. Meraz M, Alvarez-Ramirez J, Vernon-Carter EJ, Reyes I, Hernandez-Jaimes C, Martinez-Martinez F (2020) A two competing substrates Michaelis-Menten kinetics scheme for the analysis of in vitro starch digestograms. Starch-Starke 72:1900170

    Article  Google Scholar 

  39. Meriç, S, Tünay OT, San HA (1998) Modelling approaches in substrate inhibition. Fresenius Environ Bull 7(3A-4A):183–189

    Google Scholar 

  40. Meriç, S, Tünay O, San HA (2002) A new approach to modelling substrate inhibition. Environ Technol 23(2):163–177

    Article  Google Scholar 

  41. Mirón J, González MP, Vázquez JA, Pastrana L, Murado MA (2004) A mathematical model for glucose oxidase kinetics, including inhibitory, deactivant and diffusional effects, and their interactions. Enzyme Microb Technol 34(5):513–522

    Article  Google Scholar 

  42. Mösche M, Jördening HJ (1999) Comparison of different models of substrate and product inhibition in anaerobic digestion. Water Res 33(11):2545–2554

    Article  Google Scholar 

  43. Murray JD (2002) Mathematical biology: I. An introduction, 3rd edn. Springer, New York

    Google Scholar 

  44. Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47(1):52–55

    Article  Google Scholar 

  45. Polatoǧlu I, Aydin L, Nevruz BC, Özer S (2020) A novel approach for the optimal design of a biosensor. Anal Lett 53:1–18

    Google Scholar 

  46. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  47. Rabner A, Martinez E, Pedhazur R, Elad T, Belkin S, Shacham Y (2009) Mathematical modeling of a bioluminescent E. Coli based biosensor. Nonlinear Anal Model Control 14(4):505–529

    Article  MATH  Google Scholar 

  48. Reed MC, Lieb A, Nijhout HF (2010) The biological significance of substrate inhibition: a mechanism with diverse functions. BioEssays 32(5):422–429

    Article  Google Scholar 

  49. Rickus J (2005) Impact of coenzyme regeneration on the performance of an enzyme based optical biosensor: a computational study. Biosens Bioelectron 21(6):965–972

    Article  Google Scholar 

  50. Ričkus L, Baronas R (2015) Computational modelling of a biosensor based on allosteric enzyme layer. Inf Sci 73:105–112

    Google Scholar 

  51. Sadana A, Sadana N (2011) Handbook of biosensors and biosensor kinetics. Elsevier, Amsterdam

    MATH  Google Scholar 

  52. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York-Basel

    Book  MATH  Google Scholar 

  53. Scheller FW, Schubert F (1992) Biosensors. Elsevier Science, Amsterdam

    Google Scholar 

  54. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Sel Electrode Rev 12(2):203–260

    Google Scholar 

  55. Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev 31(3):446–477

    Article  MathSciNet  MATH  Google Scholar 

  56. Shen P, Larter R (1994) Role of substrate inhibition kinetics in enzymatic chemical oscillations. Biophys J 67(4):1414–1428

    Article  Google Scholar 

  57. Shinto H, Tashiro Y, Yamashita M, Kobayashi G, Sekiguchi T, Hanai, T, Kuriya Y, Okamoto M, Sonomoto K (2007) Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production. J Biotechnol 131(1):45–56

    Article  Google Scholar 

  58. Stobb MT, Monroe DM, Leiderman K, Sindi SS (2019) Assessing the impact of product inhibition in a chromogenic assay. Anal Biochem 580:62–71

    Article  Google Scholar 

  59. Traut TW (ed) (2008) Allosteric regulatory enzymes. Springer, New York

    Google Scholar 

  60. Turner APF, Karube I, Wilson GS (eds) (1990) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  61. Šimelevičius D, Baronas R (2008) Modelling of amperometric biosensors in the case of substrate and product inhibition. In: Targamadzė A, Butleris R, Butkienė R (eds) Information technologies’2008 - proceedings of 14th international conference on information and software technologies. Kaunas University of Technology, Kaunas, pp 125–130

    Google Scholar 

  62. Šimelevičius D, Baronas R (2010) Computational modelling of amperometric biosensors in the case of substrate and product inhibition. J Math Chem 47(1):430–445

    Article  MathSciNet  MATH  Google Scholar 

  63. Šimelevičius D, Baronas R (2011) Mechanisms controlling the sensitivity of amperometric biosensors in the case of substrate and product inhibition. In: Omerovic A, Simoni D, Bobashev G (eds) SIMUL 2011: the third international conference on advances in system simulation. Barcelona, Spain, pp 69–74

    Google Scholar 

  64. van Niel EWJ, Claassen PAM, Stams AJM (2002) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81(3):255–262

    Article  Google Scholar 

  65. Whitehead EP, Nucci R, Vaccaro C, Rossi M (1991) Hill coefficient ratios give binding ratios of allosteric enzyme effectors; inhibition, activation, and squatting in deoxycytidylate aminohydrolase (EC 3.5.4.12). Arch Biochem Biophys 289(1):12–18

    Article  Google Scholar 

  66. Ylilammi M, Lehtinen L (1988) Numerical analysis of a theoretical one-dimensional amperometric enzyme sensor. Med Biol Eng Comput 26(1):81–87

    Article  Google Scholar 

  67. Zhang S, Zhao H, John R (2001) Development of a quantitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors-theoretical and practical considerations. Biosens Bioelectron 16(9–12):1119–1126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Biosensors Utilizing Non-Michaelis–Menten Kinetics. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_9

Download citation

Publish with us

Policies and ethics