Skip to main content
Log in

Computational modelling of amperometric biosensors in the case of substrate and product inhibition

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper the response of an amperometric biosensor at mixed enzyme kinetics and diffusion limitations is modelled in the case of the substrate and the product inhibition. The model is based on non-stationary reaction–diffusion equations containing a non-linear term related to non-Michaelis–Menten kinetics of an enzymatic reaction. A numerical simulation was carried out using a finite difference technique. The complex enzyme kinetics produced different calibration curves for the response at the transition and the steady-state. The biosensor operation is analysed with a special emphasis to the conditions at which the biosensor response change shows a maximal value. The dependence of the biosensor sensitivity on the biosensor configuration is also investigated. Results of the simulation are compared with known analytical results and with previously conducted researches on the biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutfreund H.: Kinetics for the Life Sciences. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  2. Scheller F.W., Schubert F.: Biosensors. Elsevier Science, Amsterdam (1992)

    Google Scholar 

  3. Turner A.P.F., Karube I., Wilson G.S.: Biosensors: Fundamentals and Applications. Oxford University Press, USA (1990)

    Google Scholar 

  4. Liang J.F., Li Y.T., Yang V.C.: J. Pharm. Sci. 89(8), 979 (2000)

    Article  CAS  Google Scholar 

  5. Rogers K.R.: Biosens. Bioelectron 10(6–7), 533 (1995)

    Article  CAS  Google Scholar 

  6. Scheller F.W., Schubert F., Fedrowitz J.: Frontiers in Biosensorics II. Practical Applications. Birkhäuser, Basel (1997)

    Google Scholar 

  7. Yu D., Blankert B., Vire J.C., Kauffmann J.M.: Anal. Lett. 38(11), 1687 (2005)

    Article  CAS  Google Scholar 

  8. Chaubey A., Malhotra B.D.: Biosens. Bioelectron. 17(6–7), 441 (2002)

    Article  CAS  Google Scholar 

  9. Cornish-Bowden A.: Fundamentals of Enzyme Kinetics, 3rd edn. Portland Press, London (2004)

    Google Scholar 

  10. N.C. of the International Union of Biochemistrys, Biochem. J. 213(3), 561 (1983)

    Google Scholar 

  11. Baronas R., Ivanauskas F., Kulys J.: J. Math. Chem. 35(3), 199 (2004)

    Article  CAS  Google Scholar 

  12. Kulys J.: Nonlinear Anal. Model. Contr. 11(4), 385 (2006)

    CAS  Google Scholar 

  13. J.R.D. Corcuera, R. Cavalieri, J. Powers, J. Tang, in Proceedings of the 2004 ASAE/Csae Annual International Meeting (American Society of Agricultural Engineers, Ottawa, Ontario, 2004), p. 47030

  14. Ferreira L.S., Souza M.B.D., Trierweiler J.O., Broxtermann O., Folly R.O.M., Hitzmann B.: Comp. Chem. Engng. 27(8), 1165 (2003)

    Article  CAS  Google Scholar 

  15. Mell L.D., Maloy T.: Anal. Chem. 47(2), 299 (1975)

    Article  CAS  Google Scholar 

  16. Kernevez J.P.: Enzyme Mathematics. Studies in Mathematics and its Applications. Elsevier Science, Amsterdam (1980)

    Google Scholar 

  17. Kulys J.: Anal. Lett. 14(B6), 377 (1981)

    CAS  Google Scholar 

  18. Bartlett P.N., Whitaker R.G.: J. Electroanal. Chem. 224(1–2), 27 (1987)

    Article  CAS  Google Scholar 

  19. Schulmeister T.: Selective Electrode Rev. 12, 203 (1990)

    Google Scholar 

  20. Lin S.K.C., Du C., Koutinas A., Wang R., Webb C.: Biochem. Eng. J. 41(2), 128 (2008)

    Article  CAS  Google Scholar 

  21. Meric S., Tunay O., Ali S.H.: Environ. Technol. 23(2), 163 (2002)

    Article  CAS  Google Scholar 

  22. Mirón J., González M.P., Vázquez J.A., Pastrana L., Murado M.A.: Enzyme Microb. Technol. 34(5), 513 (2004)

    Article  Google Scholar 

  23. Mosche M., Jordening H.J.: Water Res. 33(11), 2545 (1999)

    Article  CAS  Google Scholar 

  24. van Niel E.W.J., Claassen P.A.M., Stams A.J.M.: Biotechnol. Bioeng. 81(3), 255 (2002)

    Article  Google Scholar 

  25. Shen P., Larter R.: Biophys J. 67(4), 1414 (1994)

    Article  CAS  Google Scholar 

  26. Shinto H., Tashiro Y., Yamashita M., Kobayashi G., Sekiguchi T., Hanai T., Kuriya Y., Okamoto M., Sonomoto K.: J. Biotechnol. 131(1), 45 (2007)

    Article  CAS  Google Scholar 

  27. Kulys J., Baronas R.: Sensors 6(11), 1513 (2006)

    Article  CAS  Google Scholar 

  28. D. Šimelevičius, R. Baronas, in Information Technologies’2008—Proceedings of 14th International Conference on Information and Software Technologies, ed. by A. Targamadzė, R. Butleris, R. Butkienė (Kaunas University of Technology, 2008), pp. 125–130

  29. Britz D.: Digital Simulation in Electrochemistry, 3rd edn. Springer, Berlin (2005)

    Google Scholar 

  30. Samarskii A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)

    Google Scholar 

  31. Li B., Shen Y., Li B.: J. Phys. Chem. A 112(11), 2311 (2008)

    Article  CAS  Google Scholar 

  32. Segel L.A., Slemrod M.: SIAM Rev. 31(3), 446 (1989)

    Article  Google Scholar 

  33. Ciliberto A., Capuani F., Tyson J.J.: PLoS Comput. Biol. 3(3), e45 (2007)

    Article  Google Scholar 

  34. Baronas R., Kulys J.: Sensors 8(8), 4845 (2008)

    Article  Google Scholar 

  35. Baronas R., Kulys J., Ivanauskas F.: J. Math. Chem. 39(2), 345 (2006)

    Article  CAS  Google Scholar 

  36. Baronas R., Ivanauskas F., Kulys J.: J. Math. Chem. 42(3), 321 (2007)

    Article  CAS  Google Scholar 

  37. Press W.H., Teukolsky B.P.F.S.A., Vetterling W.T.: Numerical Recipes in C++: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dainius Šimelevičius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimelevičius, D., Baronas, R. Computational modelling of amperometric biosensors in the case of substrate and product inhibition. J Math Chem 47, 430–445 (2010). https://doi.org/10.1007/s10910-009-9581-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9581-x

Keywords

Navigation