Skip to main content
Log in

Computing quasi-steady state reductions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

There is a systematic approach to the computation of quasi-steady state reductions, employing the classical theory of Tikhonov and Fenichel, rather than the commonly used ad-hoc method. In the present paper we discuss the relevant case that the local slow manifold (in the asymptotic limit) is a vector subspace, give closed-form expressions for the reduction and compare these to the ones obtained by the customary method. As it turns out, investment of more theory pays off in the form of simpler reduced systems. Applications include a number of standard models for reactions in biochemistry, for which the reductions are extended to the fully reversible setting. In a short final section we illustrate by example that a QSS assumption may be erroneous if the hypotheses for Tikhonov’s theorem are not satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkins P., de Paula J.: Physical Chemistry, 8th edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  2. Berg J.M., Tymovzko J.L., Stryer L.: Biochemistry: International Edition, 6th edn. Palgrave Macmillan, New York (2006)

    Google Scholar 

  3. Borghans J.A.M., de Boer R.J., Segel L.A.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    Article  CAS  Google Scholar 

  4. Duchêne P., Rouchon P.: Kinetic scheme reduction via geometric singular perturbation techniques. Chem. Eng. Sci. 51, 4461–4472 (1996)

    Google Scholar 

  5. Fenichel N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equs. 31, 53–98 (1979)

    Article  Google Scholar 

  6. Gantmacher F.R.: Applications of the Theory of Matrices. Dover, Mineola (2005)

    Google Scholar 

  7. Heinrich R., Schuster S.: The Regulation of Cellular Systems. Chapman and Hall, New York (1996)

    Book  Google Scholar 

  8. Keener J., Sneyd J.: Mathematical Physiology. I: Cellular Physiology. Springer, New York (2009)

    Google Scholar 

  9. Murray J.D.: Mathematical Biology. I. An Introduction, 3rd edn. Springer, New York (2002)

    Google Scholar 

  10. Noethen L., Walcher S.: Quasi-steady state in the Michaelis–Menten system. Nonlinear Anal. Real World Appl. 8, 1512–1535 (2007)

    Article  CAS  Google Scholar 

  11. Noethen L., Walcher S.: Quasi-steady state and nearly invariant sets. SIAM J. Appl. Math. 70, 1341–1363 (2009)

    Article  Google Scholar 

  12. Noethen L., Walcher S.: Tihkonov’s theorem and quasi-steady state. Discret. Contin. Dyn. Syst. Ser. B 16(3), 945–961 (2011)

    Article  Google Scholar 

  13. Schauer M., Heinrich R.: Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction. J. Theor. Biol. 79, 425–442 (1979)

    Article  CAS  Google Scholar 

  14. Schauer M., Heinrich R.: Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks. Math. Biosci. 65, 155–170 (1983)

    Article  CAS  Google Scholar 

  15. Schnell S., Maini C.: Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–499 (2000)

    Article  CAS  Google Scholar 

  16. Segel L.A., Slemrod M.: The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Article  Google Scholar 

  17. Stiefenhofer M.: Quasi-steady-state approximation for chemical reaction networks. J. Math. Biol. 36, 593–609 (1998)

    Article  Google Scholar 

  18. Tikhonov A.N.: Systems of differential equations containing a small parameter multiplying the derivative (In Russian). Mat. Sb. 31(73), 575–586 (1952)

    Google Scholar 

  19. Vasil’eva A.B.: Asymptotic behavior of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives. Russ. Math. Surv. 18, 13–84 (1963)

    Article  Google Scholar 

  20. Verhulst F.: Methods and Applications of Singular Perturbations. Springer, Berlin (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Walcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goeke, A., Schilli, C., Walcher, S. et al. Computing quasi-steady state reductions. J Math Chem 50, 1495–1513 (2012). https://doi.org/10.1007/s10910-012-9985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-9985-x

Keywords

Navigation