Skip to main content

Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Abstract

Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AMPK:

AMP-activated protein kinase

AS:

atherosclerosis

ASK1:

apoptosis signal-regulating kinase-1

ATF-6:

activating transcription factor-6

ATG:

autophagy-related gene

Aβ:

amyloid-β

BAX:

Bcl2-associated x protein

Beclin1:

Bcl2-interacting protein 1

CHOP:

C/EBP homologous protein

CMA:

chaperone-mediated autophagy

DAPK1:

death-associated protein kinase 1

DDIT3:

DNA damage-inducible transcript 3

DM:

diabetes mellitus

DR5:

death receptor 5

elF2α:

eukaryotic translocation factor 2α

ER:

endoplasmic reticulum

ERAD:

ER-associated degradation

ERK:

extracellular signal-regulated kinase

FDA:

Food and Drug Administration

GFB:

glomerular filtration barrier

GSK-3β:

glycogen synthase kinase-3β

I/R:

ischemic/reperfusion

IL:

interleukin

IRE1:

inositol-requiring enzyme-1

JNK:

c-Jun N-terminal kinase

LC3:

light chain-3

LPS:

lipopolysaccharide

miR:

microRNA

mTOR:

mechanistic target of rapamycin

NAFLD:

non-alcoholic fatty liver disease

NDs:

neurological disorders

NLRP3:

nucleotide-binding domain and leucine-rich repeat containing protein 3

Nrf2:

nuclear factor erythroid 2-related factor 2

PD:

Parkinson’s disease

PERK:

PRK-like ER kinase

PI3K:

phosphoinositide 3-kinase

SCI:

spinal cord injury

SGLT1:

sodium-dependent glucose co-transporter 1

SHP:

small heterodimer protein

Sirt1:

sirtuin1

t-BHP:

tert-Butyl hydroperoxide

TRAF2:

tumor necrosis factor receptor-associated factor 2

TRAIL:

tumor necrosis factor-related apoptosis-inducing ligand

ULK1/2:

unc51-like autophagy activating kinase 1/2

UPR:

unfolded protein response

XBP1:

X box-binding protein 1

References

  1. Yaribeygi H, Simental-Mendía LE, Butler AE, Sahebkar A (2019) Protective effects of plant-derived natural products on renal complications. J Cell Physiol 234(8):12161–12172

    Article  CAS  PubMed  Google Scholar 

  2. Ashrafizadeh M, Ahmadi Z (2019) Effects of statins on gut microbiota (microbiome). Rev Clin Med 6(2):55–59

    Google Scholar 

  3. Ashrafizadeh M, Ahmadi Z (2019) The effects of astaxanthin treatment on the sperm quality of mice treated with nicotine. Rev Clin Med 6(1):156–158

    Google Scholar 

  4. Ahmadi Z, Mohammadinejad R, Ashrafizadeh M (2019) Drug delivery systems for resveratrol, a non-flavonoid polyphenol: emerging evidence in last decades. J Drug Delivery Sci Technol 51:591–604

    Article  CAS  Google Scholar 

  5. Ahmadi Z, Ashrafizadeh M (2019) Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 34(1):11–19

    Article  PubMed  CAS  Google Scholar 

  6. Ong W-Y, Farooqui T, Koh H-L, Farooqui AA, Ling E-A (2015) Protective effects of ginseng on neurological disorders. Front Aging Neurosci 7:129

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huang Q, Zhang S-P, Shi Z-L (2018) Role of ginseng polysaccharides in renal fibrosis via cAMP/PKA/CREB signaling pathway in diabetic nephropathy. Chin Pharmacol Bull 34(5):695–701

    Google Scholar 

  8. Parlakpinar H, Ozhan O, Ermis N, Acet A (2016) Cardiovascular effects of panax ginseng. J Turgut Ozal Med Cent 23(4):482–487

    Article  Google Scholar 

  9. Kim GW, Jo HK, Chung SH (2018) Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo. J Ginseng Res 42(4):419–428

    Article  PubMed  Google Scholar 

  10. Takeda K, Okumura K (2015) Interferon-γ-mediated natural killer cell activation by an aqueous Panax ginseng extract. Evid Based Complement Alternat Med 2015:11

    Article  Google Scholar 

  11. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou X-J, Klionsky DJ, Zhang H (2019) Podocytes and autophagy: a potential therapeutic target in lupus nephritis. Autophagy 15(5):908–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yaribeygi H, Mohammadi MT, Rezaee R, Sahebkar A (2018) Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy. J Cell Biochem 119(7):6080–6093

    Article  CAS  PubMed  Google Scholar 

  14. Yaribeygi H, Mohammadi MT, Sahebkar A (2018) Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomed Pharmacother 98:333–337

    Article  CAS  PubMed  Google Scholar 

  15. Yaribeygi H, Zare V, Butler AE, Barreto GE, Sahebkar A (2019) Antidiabetic potential of saffron and its active constituents. J Cell Physiol 234(6):8610–8617

    Article  CAS  PubMed  Google Scholar 

  16. Rahmati M, Moosavi MA, McDermott MF (2018) ER stress: a therapeutic target in rheumatoid arthritis? Trends Pharmacol Sci 39(7):610–623

    Article  CAS  PubMed  Google Scholar 

  17. Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K et al (2018) Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell 5(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sobhani B, Roomiani S, Ahmadi Z, Ashrafizadeh M (2019) Histopathological analysis of testis: effects of astaxanthin treatment against nicotine toxicity. Iran J Toxicol 13(1):41–44

    CAS  Google Scholar 

  19. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jorgensen I, Rayamajhi M, Miao EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17(3):151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Roomiani S, Katebi M (2019) Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: potential applications in melanoma therapy. J Cell Physiol 234(11):19471–19479

    Article  CAS  PubMed  Google Scholar 

  22. Tavakol S (2014) Acidic pH derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells. Med Hypotheses 83(6):668–672

    Article  CAS  PubMed  Google Scholar 

  23. Ashkenazi A (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 19(3–4):325–331

    Article  CAS  PubMed  Google Scholar 

  24. Ichim G, Tait SW (2016) A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 16(8):539

    Article  CAS  PubMed  Google Scholar 

  25. Rabiee S, Tavakol S, Barati M, Joghataei MT (2018) Autophagic, apoptotic, and necrotic cancer cell fates triggered by acidic pH microenvironment. J Cell Physiol 234(7):12061–12069

    Article  PubMed  CAS  Google Scholar 

  26. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9(5):361

    Article  CAS  PubMed  Google Scholar 

  28. Ashrafizadeh M, Yaribeygi H, Atkin SL, Sahebkar A (2019) Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab Syndr Clin Res Rev 13(4):2445–2449

    Article  Google Scholar 

  29. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ et al (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 5(7):eaaw2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M (2019) Berberine as a potential autophagy modulator. J Cell Physiol 234(9):14914–14926

    Article  CAS  Google Scholar 

  31. Qiao Y, Choi JE, Vo JN, Tien JC, Wang L, Xiao L et al (2019) Therapeutic targeting autophagy to sensitize cancer immunotherapy in various cancer types. AACR 79(13 Suppl):4153

    Google Scholar 

  32. Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Kaviyani N, Tavakol S Monoterpenes modulating autophagy: a review study. Basic Clin Pharmacol Toxicol 126(1):9–20

    Google Scholar 

  33. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299

    Article  CAS  PubMed  Google Scholar 

  34. Klionsky DJ, Codogno P (2013) The mechanism and physiological function of macroautophagy. J Innate Immun 5(5):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol Cell 25(2):193–205

    Article  PubMed  CAS  Google Scholar 

  36. Alers S, Löffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22(1):R29–R34

    Article  CAS  PubMed  Google Scholar 

  38. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461(7264):654

    Article  CAS  PubMed  Google Scholar 

  39. Smith AG, Macleod KF (2019) Autophagy, cancer stem cells & drug resistance. J Pathol 247(5):708–718

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519

    Article  CAS  PubMed  Google Scholar 

  41. Lin JH, Walter P, Yen TB (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev pathmechdis Mech Dis 3:399–425

    Article  CAS  Google Scholar 

  42. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326

    Article  CAS  PubMed  Google Scholar 

  43. Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233

    Article  CAS  PubMed  Google Scholar 

  44. Sprenkle NT, Sims SG, Sánchez CL, Meares GP (2017) Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 12(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rao RV, Ellerby H, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11(4):372

    Article  CAS  PubMed  Google Scholar 

  46. Shakeri A, Cicero AF, Panahi Y, Mohajeri M, AJJocp S (2019) Curcumin: a naturally occurring autophagy modulator. J Cell Physiol 234(5):5643–5654

    Article  CAS  PubMed  Google Scholar 

  47. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904

    Article  CAS  PubMed  Google Scholar 

  48. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following ER stress. J Biol Chem 79(19):20108–20117

    Article  CAS  Google Scholar 

  49. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23(20):7198–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vekich JA, Belmont PJ, Thuerauf DJ, Glembotski CC (2012) Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. J Mol Cell Cardiol 53(2):259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee A-H, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park B, Hwang H, Lee J, Sohn S-O, Lee SH, Jung MY et al (2017) Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi. J Ginseng Res 41(4):524–530

    Article  PubMed  Google Scholar 

  53. Ahuja A, Kim JH, Kim J-H, Yi Y-S, Cho JY (2018) Functional role of ginseng-derived compounds in cancer. J Ginseng Res 42(3):248–254

    Article  PubMed  Google Scholar 

  54. Kim MK, Kang H, Baek CW, Jung YH, Woo YC, Choi GJ et al (2018) Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain. J Ginseng Res 42(2):183–191

    Article  PubMed  Google Scholar 

  55. Kim D-H (2012) Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 36(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tavakol S, Mousavi SMM, Tavakol B, Hoveizi E, Ai J, Sorkhabadi SMR (2017) Mechano-transduction signals derived from self-assembling peptide nanofibers containing long motif of laminin influence neurogenesis in in-vitro and in-vivo. Mol Neurobiol 54(4):2483–2496

    Article  CAS  PubMed  Google Scholar 

  57. Tavakol S, Kashani IR, Azami M, Khoshzaban A, Tavakol B, Kharrazi S et al (2012) In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM. J Nanopart Res 14(12):1265

    Article  CAS  Google Scholar 

  58. Cui J, Wang J, Zheng M, Gou D, Liu C, Zhou Y (2017) Ginsenoside Rg2 protects PC12 cells against β-amyloid25-35-induced apoptosis via the phosphoinositide 3-kinase/Akt pathway. Chem Biol Interact 275:152–161

    Article  CAS  PubMed  Google Scholar 

  59. Zhou W, Huang H, Zhu H, Zhou P, Shi X (2018) New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp. 229 and activities in inducing osteogenic differentiation by Wnt/β-catenin signaling activation. J Ginseng Res 42(2):199–207

    Article  PubMed  CAS  Google Scholar 

  60. Sun J, Yu X, Huangpu H, Yao F (2019) Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1. Biomed Pharmacother 109:254–261

    Article  CAS  PubMed  Google Scholar 

  61. Jung O, Lee SY (2018) Synergistic anticancer effects of timosaponin AIII and ginsenosides in MG63 human osteosarcoma cells. J Ginseng Res 43(3):488–495

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhou T-T, Zu G, Wang X, Zhang X-G, Li S, Liang Z-H et al (2015) Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine)-induced mouse model of Parkinson’s disease. Int Immunopharmacol 29(2):334–343

    Article  CAS  PubMed  Google Scholar 

  63. Lee CH, Kim J-H (2014) A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 38(3):161–166

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee S, Rhee D-K (2017) Effects of ginseng on stress-related depression, anxiety, and the hypothalamic–pituitary–adrenal axis. J Ginseng Res 41(4):589–594

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ning C, Gao X, Wang C, Huo X, Liu Z, Sun H et al (2018) Hepatoprotective effect of ginsenoside Rg1 from Panax ginseng on carbon tetrachloride-induced acute liver injury by activating Nrf2 signaling pathway in mice. Environ Toxicol 33(10):1050–1060

    Article  CAS  PubMed  Google Scholar 

  66. Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M et al (2018) Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat diet-induced obese mice mediated by AMPK. Nutrients 10(7):830

    Article  PubMed Central  CAS  Google Scholar 

  67. Cao X, Ye Q, Fan M, Liu C (2019) Antimicrobial effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms. J Appl Microbiol 126(3):740–751

    Article  CAS  PubMed  Google Scholar 

  68. Yuan C-S, Wang C-Z, Wicks SM, Qi L-W (2010) Chemical and pharmacological studies of saponins with a focus on American ginseng. J Ginseng Res 34(3):160

    Article  CAS  PubMed  Google Scholar 

  69. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang D-C (2018) Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 42(2):123–132

    Article  PubMed  Google Scholar 

  70. Wang P, Lin C, Wu S, Huang K, Wang Y, Bao X et al (2018) Inhibition of autophagy is involved in the protective effects of ginsenoside Rb1 on spinal cord injury. Cell Mol Neurobiol 38(3):679–690

    Article  CAS  PubMed  Google Scholar 

  71. Fan X, Tao J, Zhou Y, Hou Y, Wang Y, Gu D et al (2019) Investigations on the effects of ginsenoside-Rg1 on glucose uptake and metabolism in insulin resistant HepG2 cells. Eur J Pharmacol 843:277–284

    Article  CAS  PubMed  Google Scholar 

  72. Mortezaee K, Salehi E, Mirtavoos-mahyari H, Motevaseli E, Najafi M, Farhood B et al (2019) Mechanisms of apoptosis modulation by curcumin: implications for cancer therapy. J Cell Physiol 234(8):12537–12550

    Article  CAS  PubMed  Google Scholar 

  73. Li Q, Xiang Y, Chen Y, Tang Y, Zhang Y (2017) Ginsenoside Rg1 protects cardiomyocytes against hypoxia/reoxygenation injury via activation of Nrf2/HO-1 signaling and inhibition of JNK. Cell Physiol Biochem 44(1):21–37

    Article  PubMed  Google Scholar 

  74. Leung KW, Wong AS-T (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5(1):20

    Article  CAS  Google Scholar 

  75. Lee J, Lee E, Kim D, Lee J, Yoo J, Koh B (2009) Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol 122(1):143–148

    Article  CAS  PubMed  Google Scholar 

  76. Bae E-A, Choo M-K, Park E-K, Park S-Y, Shin H-Y, Kim D-H (2002) Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 25(6):743–747

    Article  CAS  PubMed  Google Scholar 

  77. Yang L, Deng Y, Xu S, Zeng X (2007) In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. J Chromatogr B 854(1–2):77–84

    Article  CAS  Google Scholar 

  78. Xiong J, Sun M, Guo J, Huang L, Wang S, Meng B et al (2009) Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of sodium-dependent glucose co-transporter 1. J Pharm Pharmacol 61(3):381–386

    Article  CAS  PubMed  Google Scholar 

  79. Yang X-D, Yang Y-Y, Ouyang D-S, Yang G-P (2015) A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100:208–220

    Article  CAS  PubMed  Google Scholar 

  80. Høyer-Hansen M, Jäättelä M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576

    Article  PubMed  CAS  Google Scholar 

  81. B’chir W, Maurin A-C, Carraro V, Averous J, Jousse C, Muranishi Y et al (2013) The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41(16):7683–7699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL (2015) Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 59(3):292–307

    Article  PubMed  CAS  Google Scholar 

  83. Yamaguchi H, Wang H-G (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279(44):45495–45502

    Article  CAS  PubMed  Google Scholar 

  84. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A et al (2001) A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2(5):415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cybulsky AV (2013) The intersecting roles of endoplasmic reticulum stress, ubiquitin–proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int 84(1):25–33

    Article  CAS  PubMed  Google Scholar 

  86. Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M et al (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10(3):285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta, Mol Cell Res 1833(12):3460–3470

    Article  CAS  PubMed  Google Scholar 

  88. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nugent RA, Fathima SF, Feigl AB, Chyung D (2011) The burden of chronic kidney disease on developing nations: a 21st century challenge in global health. Nephron Clin Pract 118(3):c269–c277

    Article  PubMed  Google Scholar 

  90. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  PubMed  Google Scholar 

  91. Mao N, Tan RZ, Wang SQ, Wei C, Shi XL, Fan JM et al (2016) Ginsenoside Rg1 inhibits angiotensin II-induced podocyte autophagy via AMPK/mTOR/PI3K pathway. Cell Biol Int 40(8):917–925

    Article  CAS  PubMed  Google Scholar 

  92. Mao N, Cheng Y, Shi X-L, Wang L, Wen J, Zhang Q et al (2014) Ginsenoside Rg1 protects mouse podocytes from aldosterone-induced injury in vitro. Acta Pharmacol Sin 35(4):513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xing JJ, Hou JG, Ma ZN, Wang Z, Ren S, Wang YP et al (2019) Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif 52(4):e12627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Huang X-P, Ding H, Yang X-Q, Li J-X, Tang B, Liu X-D et al (2017) Synergism and mechanism of Astragaloside IV combined with Ginsenoside Rg1 against autophagic injury of PC12 cells induced by oxygen glucose deprivation/reoxygenation. Biomed Pharmacother 89:124–134

    Article  CAS  PubMed  Google Scholar 

  95. Zhang Z-L, Fan Y, Liu M-L (2012) Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol Cell Biochem 365(1–2):243–250

    Article  CAS  PubMed  Google Scholar 

  96. Lu T, Jiang Y, Zhou Z, Yue X, Wei N, Chen Z et al (2011) Intranasal ginsenoside Rb1 targets the brain and ameliorates cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull 34(8):1319–1324

    Article  CAS  PubMed  Google Scholar 

  97. Dai S-N, Hou A-J, Zhao S-M, Chen X-M, Huang H-T, Chen B-H et al (2018) Ginsenoside Rb1 ameliorates autophagy of hypoxia cardiomyocytes from neonatal rats via AMP-activated protein kinase pathway. Chin J Integr Med 2018:1–8

    CAS  Google Scholar 

  98. Luo T, Liu G, Ma H, Lu B, Xu H, Wang Y et al (2014) Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults. Int J Mol Sci 15(9):15426–15442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qin L, Fan S, Jia R, Liu Y (2018) Ginsenoside Rg1 protects cardiomyocytes from hypoxia-induced injury through the PI3K/AKT/mTOR pathway. Die Pharmazie-An international. J Pharm Sci 73(6):349–355

    CAS  Google Scholar 

  100. Ghosh N, Ghosh R, Mandal SC (2011) Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease. Free Radic Res 45(8):888–905

    Article  CAS  PubMed  Google Scholar 

  101. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16(7):966–975

    Article  CAS  PubMed  Google Scholar 

  102. Lu D, Zhu L-H, Shu X-M, Zhang C-J, Zhao J-Y, Qi R-B et al (2015) Ginsenoside Rg1 relieves tert-butyl hydroperoxide-induced cell impairment in mouse microglial BV2 cells. J Asian Nat Prod Res 17(9):930–945

    Article  CAS  PubMed  Google Scholar 

  103. Chen Z, Lu T, Yue X, Wei N, Jiang Y, Chen M et al (2010) Neuroprotective effect of ginsenoside Rb1 on glutamate-induced neurotoxicity: with emphasis on autophagy. Neurosci Lett 482(3):264–268

    Article  CAS  PubMed  Google Scholar 

  104. Bisicchia E, Latini L, Cavallucci V, Sasso V, Nicolin V, Molinari M et al (2017) Autophagy inhibition favors survival of rubrospinal neurons after spinal cord hemisection. Mol Neurobiol 54(7):4896–4907

    Article  CAS  PubMed  Google Scholar 

  105. Lin C-W, Chen B, Huang K-L, Dai Y-S, Teng H-L (2016) Inhibition of autophagy by estradiol promotes locomotor recovery after spinal cord injury in rats. Neurosci Bull 32(2):137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Younkin SG (1998) The role of Aβ42 in Alzheimer’s disease. J Physiol Paris 92(3–4):289–292

    Article  CAS  PubMed  Google Scholar 

  107. Guo J, Chang L, Zhang X, Pei S, Yu M, Gao J (2014) Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement. Exp Ther Med 8(4):1271–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boellaard J, Kao M, Schlote W, Diringer H (1991) Neuronal autophagy in experimental scrapie. Acta Neuropathol 82(3):225–228

    Article  CAS  PubMed  Google Scholar 

  109. Moon J-H, Lee J-H, Lee Y-J, Park S-Y (2016) Autophagy flux induced by ginsenoside-Rg3 attenuates human prion protein-mediated neurotoxicity and mitochondrial dysfunction. Oncotarget 7(52):85697–85708

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ge D, Jing Q, Meng N, Su L, Zhang Y, Zhang S et al (2011) Regulation of apoptosis and autophagy by sphingosylphosphorylcholine in vascular endothelial cells. J Cell Physiol 226(11):2827–2833

    Article  CAS  PubMed  Google Scholar 

  111. Han J, Pan X-Y, Xu Y, Xiao Y, An Y, Tie L et al (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8(5):812–825

    Article  CAS  PubMed  Google Scholar 

  112. Kang C, Avery L (2008) To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4(1):82–84

    Article  PubMed  Google Scholar 

  113. Li D, Wang J, Hou J, Fu J, Chang D, Bensoussan A et al (2016) Ginsenoside Rg1 protects starving H9c2 cells by dissociation of Bcl-2-Beclin1 complex. BMC Complement Altern Med 16(1):146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Sun M, Huang C, Wang C, Zheng J, Zhang P, Xu Y et al (2013) Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise training. Biochem Biophys Res Commun 441(1):169–174

    Article  CAS  PubMed  Google Scholar 

  115. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  116. Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S et al (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15(4):534–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Qiao L, Zhang X, Liu M, Liu X, Dong M, Cheng J et al (2017) Ginsenoside Rb1 enhances atherosclerotic plaque stability by improving autophagy and lipid metabolism in macrophage foam cells. Front Pharmacol 8:727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R et al (2018) Inhibitory effects of ginsenoside Rb1 on early atherosclerosis in ApoE−/−mice via inhibition of apoptosis and enhancing autophagy. Molecules 23(11):2912

    Article  PubMed Central  CAS  Google Scholar 

  119. Yang T, Miao Y, Zhang T, Mu N, Ruan L, Duan J et al (2018) Ginsenoside Rb1 inhibits autophagy through regulation of Rho/ROCK and PI3K/mTOR pathways in a pressure-overload heart failure rat model. J Pharm Pharmacol 70(6):830–838

    Article  CAS  PubMed  Google Scholar 

  120. Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q et al (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 344(2):174–179

    Article  CAS  PubMed  Google Scholar 

  121. Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157

    Article  CAS  Google Scholar 

  122. Mi Y, Zhang D, Jiang W, Weng J, Zhou C, Huang K et al (2017) miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation. Cancer Lett 389:11–22

    Article  CAS  PubMed  Google Scholar 

  123. Kang S, Kim J-E, Song NR, Jung SK, Lee MH, Park JS et al (2014) The ginsenoside 20-O-β-D-glucopyranosyl-20 (S)-protopanaxadiol induces autophagy and apoptosis in human melanoma via AMPK/JNK phosphorylation. PLoS One 9(8):e104305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Wang Y, Liu J, Cui J, Xing L, Wang J, Yan X et al (2012) ERK and p38 MAPK signaling pathways are involved in ochratoxin A-induced G2 phase arrest in human gastric epithelium cells. Toxicol Lett 209(2):186–192

    Article  CAS  PubMed  Google Scholar 

  125. Xing X, Wang J, Xing LX, Li YH, Yan X, Zhang XH (2011) Involvement of MAPK and PI3K signaling pathway in sterigmatocystin-induced G2 phase arrest in human gastric epithelium cells. Mol Nutr Food Res 55(5):749–760

    Article  CAS  PubMed  Google Scholar 

  126. Liu Y, Fan D (2019) Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol 168:285–304

    Article  CAS  PubMed  Google Scholar 

  127. Zhang B, Zhou W-J, Gu C-J, Wu K, Yang H-L, Mei J et al (2018) The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis 9(5):574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418

    Article  CAS  PubMed  Google Scholar 

  129. Yang P, Ling L, Sun W, Yang J, Zhang L, Chang G et al (2018) Ginsenoside Rg1 inhibits apoptosis by increasing autophagy via the AMPK/mTOR signaling in serum deprivation macrophages. Acta Biochim Biophys Sin 50(2):144–155

    Article  CAS  PubMed  Google Scholar 

  130. Mi Y, Xiao C, Du Q, Wu W, Qi G, Liu X (2016) Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways. Free Radic Biol Med 90:230–242

    Article  CAS  PubMed  Google Scholar 

  131. Fulda S, Debatin K-M (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798

    Article  CAS  PubMed  Google Scholar 

  132. Liu Y, Fan D (2018) Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct 9(11):5513–5527

    Article  CAS  PubMed  Google Scholar 

  133. Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett 343(2):179–189

    Article  CAS  PubMed  Google Scholar 

  134. Kim K-Y, Park K-I, Kim S-H, Yu S-N, Park S-G, Kim Y et al (2017) Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells. Int J Mol Sci 18(5):1088

    Article  PubMed Central  CAS  Google Scholar 

  135. Wang B, Zhou T-Y, Nie C-H, Wan D-L, Zheng S-S (2018) Bigelovin, a sesquiterpene lactone, suppresses tumor growth through inducing apoptosis and autophagy via the inhibition of mTOR pathway regulated by ROS generation in liver cancer. Biochem Biophys Res Commun 499(2):156–163

    Article  CAS  PubMed  Google Scholar 

  136. Liu H, Zhao J, Fu R, Zhu C, Fan D (2019) The ginsenoside Rk3 exerts anti-esophageal cancer activity in vitro and in vivo by mediating apoptosis and autophagy through regulation of the PI3K/Akt/mTOR pathway. PLoS One 14(5):e0216759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kitade Y, Mori T, Akao Y (2017) Chemical modification of the 3′-dangling end of small interfering RNAs such as siRNAs and miRNAs: the development of miRNA replacement therapy. In: New horizons of process chemistry. Springer, Singapore, pp 237–249

    Chapter  Google Scholar 

  138. Chen W, Qiu Y (2015) Ginsenoside Rh2 targets EGFR by up-regulation of miR-491 to enhance anti-tumor activity in hepatitis B virus-related hepatocellular carcinoma. Cell Biochem Biophys 72(2):325–331

    Article  CAS  PubMed  Google Scholar 

  139. Li H, Liu J, Cao W, Xiao X, Liang L, Liu-Smith F et al (2019) C-myc/miR-150/EPG5 axis mediated dysfunction of autophagy promotes development of non-small cell lung cancer. Theranostics 9(18):5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li M, Zhang D, Cheng J, Liang J, Yu F (2019) Ginsenoside Rh2 inhibits proliferation but promotes apoptosis and autophagy by down-regulating microRNA-638 in human retinoblastoma cells. Exp Mol Pathol 108:17–23

    Article  CAS  PubMed  Google Scholar 

  141. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104(2):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al (1999) Tumoricidal activity of tumor necrosis factor–related apoptosis–inducing ligand in vivo. Nat Med 5(2):157

    Article  CAS  PubMed  Google Scholar 

  143. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang C-P, Nicholl JK et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682

    Article  CAS  PubMed  Google Scholar 

  144. Plummer R, Attard G, Pacey S, Li L, Razak A, Perrett R et al (2007) Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res 13(20):6187–6194

    Article  CAS  PubMed  Google Scholar 

  145. Jin Z, McDonald ER 3rd, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279(34):35829–35839

    Article  CAS  PubMed  Google Scholar 

  146. Ko H, Kim Y-J, Park J-S, Park JH, Yang HO (2009) Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells. Biosci Biotechnol Biochem 73(10):2183–2189

    Article  CAS  PubMed  Google Scholar 

  147. Mai TT, Moon J, Song Y, Viet PQ, Van Phuc P, Lee JM et al (2012) Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett 321(2):144–153

    Article  CAS  PubMed  Google Scholar 

  148. Guo R, Liu W, Liu B, Zhang B, Li W, Xu Y (2015) SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: an insight into endoplasmic reticulum stress response mechanism. Int J Cardiol 191:36–45

    Article  PubMed  Google Scholar 

  149. Kuno A, Tanno M, Horio Y (2015) The effects of resveratrol and SIRT1 activation on dystrophic cardiomyopathy. Ann N Y Acad Sci 1348(1):46–54

    Article  CAS  PubMed  Google Scholar 

  150. Zeng HT, Fu YC, Yu W, Lin JM, Zhou L, Liu L et al (2013) SIRT1 prevents atherosclerosis via liver-X-receptor and NF-κB signaling in a U937 cell model. Mol Med Rep 8(1):23–28

    Article  CAS  PubMed  Google Scholar 

  151. An R, Zhao L, Xu J, Xi C, Li H, Shen G et al (2016) Resveratrol alleviates sepsis-induced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF-α and myocardial apoptosis via activation of Sirt1. Mol Med Rep 14(6):5297–5303

    Article  CAS  PubMed  Google Scholar 

  152. Wang Q-L, Yang L, Peng Y, Gao M, Yang M-S, Xing W et al (2019) Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediat Inflamm 2019:6453296–6453296

    Google Scholar 

  153. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048

    Article  CAS  PubMed  Google Scholar 

  154. Özcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Özdelen E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461

    Article  PubMed  CAS  Google Scholar 

  155. Cusi K (2009) Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis. Clin Liver Dis 13(4):545–563

    Article  PubMed  Google Scholar 

  156. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  PubMed  Google Scholar 

  157. Wu K, Huang J, Li N, Xu T, Cai W, Ye Z (2018) Antitumor effect of ginsenoside Rg3 on gallbladder cancer by inducing endoplasmic reticulum stress-mediated apoptosis in vitro and in vivo. Oncol Lett 16(5):5687–5696

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ge G, Yan Y, Cai H (2017) Ginsenoside Rh2 inhibited proliferation by inducing ROS mediated ER stress dependent apoptosis in lung cancer cells. Biol Pharm Bull 40(12):b17-00463

    Article  Google Scholar 

  159. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L et al (2017) Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med 376(15):1419–1429

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cavender MA, Steg PG, Smith SC Jr, Eagle K, Ohman EM, Goto S et al (2015) Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) registry. Circulation 132(10):923–931

    Article  PubMed  Google Scholar 

  161. Yu H, Zhen J, Yang Y, Gu J, Wu S, Liu Q (2016) Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J Cell Mol Med 20(4):623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Berasi SP, Huard C, Li D, Shih HH, Sun Y, Zhong W et al (2006) Inhibition of gluconeogenesis through transcriptional activation of EGR1 and DUSP4 by AMP-activated kinase. J Biol Chem 281(37):27167–27177

    Article  CAS  PubMed  Google Scholar 

  163. Li T, Chanda D, Zhang Y, Choi H-S, Chiang JY (2010) Glucose stimulates cholesterol 7α-hydroxylase gene transcription in human hepatocytes. J Lipid Res 51(4):832–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J et al (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6(3):507–515

    Article  CAS  PubMed  Google Scholar 

  165. Lee K-T, Jung TW, Lee H-J, Kim S-G, Shin Y-S, Whang W-K (2011) The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 34(7):1201

    Article  CAS  PubMed  Google Scholar 

  166. Coppack S, Evans R, Fisher R, Frayn K, Gibbons G, Humphreys S et al (1992) Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 41(3):264–272

    Article  CAS  PubMed  Google Scholar 

  167. Yaribeygi H, Atkin SL, Simental-Mendía LE, Sahebkar A (2019) Molecular mechanisms by which aerobic exercise induces insulin sensitivity. J Cell Physiol 234(8):12385–12392

    Article  CAS  PubMed  Google Scholar 

  168. Da Luz G, Frederico MJ, da Silva S, Vitto MF, Cesconetto PA, de Pinho RA et al (2011) Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats. Eur J Appl Physiol 111(9):2015–2023

    Article  PubMed  Google Scholar 

  169. Tsutsumi A, Motoshima H, Kondo T, Kawasaki S, Matsumura T, Hanatani S et al (2011) Caloric restriction decreases ER stress in liver and adipose tissue in ob/ob mice. Biochem Biophys Res Commun 404(1):339–344

    Article  CAS  PubMed  Google Scholar 

  170. Li H, Zhou B, Liu J, Li F, Li Y, Kang X et al (2015) Administration of progranulin (PGRN) triggers ER stress and impairs insulin sensitivity via PERK-eIF2α-dependent manner. Cell Cycle 14(12):1893–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xiao N, Yang L-L, Yang Y-L, Liu L-W, Li J, Liu B et al (2017) Ginsenoside Rg5 inhibits succinate-associated lipolysis in adipose tissue and prevents muscle insulin resistance. Front Pharmacol 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gao D, Madi M, Ding C, Fok M, Steele T, Ford C et al (2014) Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 307(3):E289–E304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gual P, Le Marchand-Brustel Y, Tanti J-F (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87(1):99–109

    Article  CAS  PubMed  Google Scholar 

  174. Maedler K, Dharmadhikari G, Schumann DM, Størling J (2009) Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther 9(9):1177–1188

    Article  CAS  PubMed  Google Scholar 

  175. Oslowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M et al (2012) Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16(2):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  177. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136

    Article  CAS  PubMed  Google Scholar 

  178. Chen W, Wang J, Luo Y, Wang T, Li X, Li A et al (2016) Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue. J Ginseng Res 40(4):351–358

    Article  PubMed  Google Scholar 

  179. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yang W, Paschen W (2009) The endoplasmic reticulum and neurological diseases. Exp Neurol 2(219):376–381

    Article  CAS  Google Scholar 

  181. Lu J, Wu D-M, Zheng Y-L, Hu B, Cheng W, Zhang Z-F et al (2011) Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IκB kinase β/nuclear factor-κB-mediated inflammatory pathways in mice. Brain Behav Immun 25(8):1658–1667

    Article  CAS  PubMed  Google Scholar 

  182. Sims-Robinson C, Zhao S, Hur J, Feldman E (2012) Central nervous system endoplasmic reticulum stress in a murine model of type 2 diabetes. Diabetologia 55(8):2276–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang X, Xu L, He D, Ling S (2013) Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. Biomed Res Int 2013(2):924327

    PubMed  PubMed Central  Google Scholar 

  184. Liu D, Zhang H, Gu W, Liu Y, Zhang M (2013) Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One 8(11):e79399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Meares GP, Mines MA, Beurel E, Eom T-Y, Song L, Zmijewska AA et al (2011) Glycogen synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in neuronal cells. Exp Cell Res 317(11):1621–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu D, Zhang H, Gu W, Liu Y, Zhang M (2014) Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting GSK3β-mediated CHOP induction. Mol Med Rep 9(4):1434–1438

    Article  CAS  PubMed  Google Scholar 

  187. Bravo R, Gutierrez T, Paredes F, Gatica D, Rodriguez AE, Pedrozo Z et al (2012) Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int J Biochem Cell Biol 44(1):16–20

    Article  CAS  PubMed  Google Scholar 

  188. Liu D, Zhang M, Yin H (2013) Signaling pathways involved in endoplasmic reticulum stress-induced neuronal apoptosis. Int J Neurosci 123(3):155–162

    Article  CAS  PubMed  Google Scholar 

  189. Santos CX, Tanaka LY, Wosniak J Jr, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11(10):2409–2427

    Article  CAS  PubMed  Google Scholar 

  190. Xu Z-M, Li C-B, Liu Q-L, Li P, Yang H (2018) Ginsenoside Rg1 prevents doxorubicin-induced cardiotoxicity through the inhibition of autophagy and endoplasmic reticulum stress in mice. Int J Mol Sci 19(11):3658

    Article  PubMed Central  CAS  Google Scholar 

  191. Ji Q, Sun Z, Yang Z, Zhang W, Ren Y, Chen W et al (2018) Protective effect of ginsenoside Rg1 on LPS-induced apoptosis of lung epithelial cells. Mol Immunol 2018:3

    Google Scholar 

  192. Li Y, Wang F, Luo Y (2017) Ginsenoside Rg1 protects against sepsis-associated encephalopathy through beclin 1–independent autophagy in mice. J Surg Res 207:181–189

    Article  CAS  PubMed  Google Scholar 

  193. Moon J-H, Lee J-H, Lee Y-J, Park S-Y (2016) Autophagy flux induced by ginsenoside-Rg3 attenuates human prion protein-mediated neurotoxicity and mitochondrial dysfunction. Oncotarget 7(52):85697

    Article  PubMed  PubMed Central  Google Scholar 

  194. Xing W, Yang L, Peng Y, Wang Q, Gao M, Yang M et al (2017) Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Biosci Rep 37(4):BSR20170934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang Z-L, Liu M-L, Huang Y-S, Liang W-Y, Zhang M-M, Fan Y-D et al (2019) Ginsenoside re enhances the survival of H9C2 cardiac muscle cells through regulation of autophagy. J Asian Nat Prod Res 2019:1–14

    Google Scholar 

  196. Son YM, Kwak CW, Lee YJ, Yang D-C, Park B-C, Lee WK et al (2010) Ginsenoside Re enhances survival of human CD4+ T cells through regulation of autophagy. Int Immunopharmacol 10(5):626–631

    Article  CAS  PubMed  Google Scholar 

  197. Li L, Ma Z, Wang Y, Tang X, Tan H, Xiao C et al (2017) Protective effect of ginsenoside Rb1 on doxorubicin-induced myocardial autophagy. Zhongguo Zhong yao za zhi/Zhongguo zhongyao zazhi/China J Chin Mater Med 42(7):1365–1369

    Google Scholar 

  198. Huang Q, Wang T, Yang L, Wang H-Y (2017) Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK. Int J Mol Sci 18(5):1063

    Article  PubMed Central  CAS  Google Scholar 

  199. Liu Y, Fan D (2018) Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct 9(11):5513–5527

    Google Scholar 

  200. Chen L, Meng Y, Sun Q, Zhang Z, Guo X, Sheng X et al (2016) Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation. Cell Death Dis 7(8):e2334–e2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. D-l L, Chen L, Ding W, Zhang W, Wang H, Wang S et al (2018) Ginsenoside G-Rh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death. Chin Med 13(1):11

    Article  CAS  Google Scholar 

  202. Jalili-Nik M, Sabri H, Zamiri E, Soukhtanloo M, Karimi Roshan M, Hosseini A et al (2019) Cytotoxic effects of Ferula latisecta on human glioma U87 cells. Drug Res (Stuttg) 69:665–670

    Article  CAS  Google Scholar 

  203. Zhuang J, Yin J, Xu C, Mu Y, Lv S (2018) 20 (S)-ginsenoside Rh2 induce the apoptosis and autophagy in U937 and K562 cells. Nutrients 10(3):328

    Article  PubMed Central  CAS  Google Scholar 

  204. Liu Z, Chen D, Jiang R, Chen Y, Xiong W, Wang F et al (2016) Ginsenoside Rh2-induced inhibition of histone deacetylase 6 promotes K562 cells autophagy and apoptosis in vivo. Zhongguo Zhong yao za zhi/Zhongguo zhongyao zazhi/China J Chin Mater Med 41(4):700–704

    Google Scholar 

  205. Yang Z, Zhao T, Liu H, Zhang L (2016) Ginsenoside Rh2 inhibits hepatocellular carcinoma through β-catenin and autophagy. Sci Rep 6:19383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhu C, Liu F, Qian W, Zhang T, Li F (2016) Combined effect of sodium selenite and ginsenoside Rh2 on HCT116 human colorectal carcinoma cells. Arch Iran Med 19(1):23

    PubMed  Google Scholar 

  207. Liu S, Chen M, Li P, Wu Y, Chang C, Qiu Y et al (2015) Ginsenoside rh2 inhibits cancer stem-like cells in skin squamous cell carcinoma. Cell Physiol Biochem 36(2):499–508

    Article  CAS  PubMed  Google Scholar 

  208. Cheong JH, Kim H, Hong MJ, Yang MH, Kim JW, Yoo H et al (2015) Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells: disparity in cytotoxicity and autophagy-inducing effects due to 20 (S)-epimers. Biol Pharm Bull 38(1):102–108

    Article  CAS  PubMed  Google Scholar 

  209. Wang X-J, Zhou R-J, Zhang N, Jing Z (2019) 20 (S)-ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to icotinib through inhibition of autophagy. Eur J Pharmacol 850:141–149

    Article  CAS  PubMed  Google Scholar 

  210. Kim D-G, Jung KH, Lee D-G, Yoon J-H, Choi KS, Kwon SW et al (2014) 20 (S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin. Oncotarget 5(12):4438

    Article  PubMed  PubMed Central  Google Scholar 

  211. Zheng X, Chen W, Hou H, Li J, Li H, Sun X et al (2017) Ginsenoside 20 (S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer. Biomed Pharmacother 85:620–626

    Article  CAS  PubMed  Google Scholar 

  212. Zhang Y, Liu Q-Z, Xing S-P, Zhang J-L (2016) Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Asian Pac J Trop Med 9(2):180–183

    Article  CAS  PubMed  Google Scholar 

  213. Chung Y, Jeong S, Choi HS, Ro S, Lee JS, Park JK (2018) Upregulation of autophagy by Ginsenoside Rg2 in MCF-7 cells. Anim Cells Syst 22(6):382–389

    Article  CAS  Google Scholar 

  214. Li KK, Yan XM, Li ZN, Yan Q, Gong XJ (2019) Synthesis and antitumor activity of three novel ginsenoside M1 derivatives with 3′-ester modifications. Bioorg Chem 90:103061

    Article  CAS  PubMed  Google Scholar 

  215. Zheng K, Li Y, Wang S, Wang X, Liao C, Hu X et al (2016) Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy 12(9):1593–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhang X, Zhang S, Sun Q, Jiao W, Yan Y, Zhang X (2018) Compound K induces endoplasmic reticulum stress and apoptosis in human liver cancer cells by regulating STAT3. Molecules 23(6):1482

    Article  PubMed Central  CAS  Google Scholar 

  217. Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W (2018) Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull 41(11):1638–1644

    Article  CAS  PubMed  Google Scholar 

  218. Liu Q-F, Deng Z-Y, Ye J-M, He A-L, Li S-S (2015) Ginsenoside Rg1 protects chronic cyclosporin a nephropathy from tubular cell apoptosis by inhibiting endoplasmic reticulum stress in rats. In: Transplantation proceedings, vol 47. Elsevier, pp 566–569

    Google Scholar 

  219. Li S-S, Ye J-M, Deng Z-Y, Yu L-X, Gu X-X, Liu Q-F (2015) Ginsenoside-Rg1 inhibits endoplasmic reticulum stress-induced apoptosis after unilateral ureteral obstruction in rats. Ren Fail 37(5):890–895

    Article  CAS  PubMed  Google Scholar 

  220. Zeng X-S, Jia J-J, Ma L-F (2015) Gensenoside Rb1 protects rat PC12 cells from oxidative stress-induced endoplasmic reticulum stress: the involvement of thioredoxin-1. Mol Cell Biochem 410(1–2):239–246

    Article  CAS  PubMed  Google Scholar 

  221. Demirtas L, Guclu A, Erdur FM, Akbas EM, Ozcicek A, Onk D, et al (2016) Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. Indian J Med Res 144(4):515–524. https://doi.org/10.4103/0971-5916.200887

Download references

Conflict of Interest

Authors declare that they do not have conflict of interests.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Habib Yaribeygi or Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashrafizadeh, M. et al. (2021). Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_12

Download citation

Publish with us

Policies and ethics