Skip to main content
Log in

The antidiabetic effect of ginsenoside Rb2 via activation of AMPK

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Ginsenosides, which are active compounds found in ginseng (Panax ginseng), are used as antidiabetic treatments. The aim of this study was to determine whether Rb2, a type of ginsenoside, regulates hepatic gluconeogenesis through AMP-activated protein kinase (AMPK) and the orphan nuclear receptor small heterodimer partner (SHP) in hyperlipidemic conditions used as an in vitro model of type 2 diabetes. Considering these results, we concluded that Rb2 may inhibit palmitate-induced gluconeogenesis via AMPK-induced SHP by relieving ER stress, a cause of gluconeogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berasi, S. P., Huard, C., Li, D., Shih, H. H., Sun, Y., Zhong, W., Paulsen, J. E., Brown, E. L., Gimeno, R. E., and Martinez, R. V., Inhibition of gluconeogenesis through transcriptional activation of EGR1 and DUSP4 by AMP-activated kinase. J. Biol. Chem., 281, 27167–27177 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Chan, L. Y., Chiu, P. Y., and Lau, T. K., Embryotoxicity study of ginsenoside Rc and Re in in vitro rat whole embryo culture. Reprod. Toxicol., 19, 131–134 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Choi, S., Epidermis proliferative effect of the Panax ginseng ginsenoside Rb2. Arch. Pharm. Res., 25, 71–76 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Collins, Q. F., Xiong, Y., Lupo, E. G., Jr., Liu, H. Y., and Cao, W., p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J. Biol. Chem., 281, 24336–24344 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Feldstein, A. E., Canbay, A., Angulo, P., Taniai, M., Burgart, L. J., Lindor, K. D., and Gores, G. J., Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology, 125, 437–443 (2003).

    Article  PubMed  Google Scholar 

  • Hays, N. P., Galassetti, P. R., and Coker, R. H., Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacol. Ther., 118, 181–191 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hwang, J. T., Kim, S. H., Lee, M. S., Kim, S. H., Yang, H. J., Kim, M. J., Kim, H. S., Ha, J., Kim, M. S., and Kwon, D. Y., Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun., 364, 1002–1008 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Imai, K., Inukai, K., Ikegami, Y., Awata, T., and Katayama, S., LKB1, an upstream AMPK kinase, regulates glucose and lipid metabolism in cultured liver and muscle cells. Biochem. Biophys. Res. Commun., 351, 595–601 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. Y., Yuan, H. D., Chung, I. K., and Chung, S. H., Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J. Agric. Food Chem., 57, 1532–1537 (2009a).

    Article  CAS  Google Scholar 

  • Kim, E. J., Lee, H. I., Chung, K. J., Noh, Y. H., Ro, Y., and Koo, J. H., The ginsenoside-Rb2 lowers cholesterol and triacylglycerol levels in 3T3-L1 adipocytes cultured under high cholesterol or fatty acids conditions. BMB Rep., 42, 194–199 (2009b).

    Article  PubMed  CAS  Google Scholar 

  • Kim, M., Ahn, B. Y., Lee, J. S., Chung, S. S., Lim, S., Park, S. G., Jung, H. S., Lee, H. K., and Park, K. S., The ginsenoside Rg3 has a stimulatory effect on insulin signaling in L6 myotubes. Biochem. Biophys. Res. Commun., 389, 70–73 (2009c).

    Article  PubMed  CAS  Google Scholar 

  • Lee, M., Hwang, J., Kim, S., Yoon, S., Kim, M., Yang, H. J., and Kwon, D. J., Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J. Ethnopharmacol., 127, 771–776 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Chanda, D., Zhang, Y., Choi, H. S., and Chiang, J. Y. L., Glucose stimulates cholesterol 7α-hydroxylase gene transcription in human hepatocytes. J. Lipid Res., 51, 832–842 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lim, G., Lee, H., Kim, E. J., Noh, Y. H., Ro, Y., and Koo, J. H., Ginsenoside Rb2 upregulates the low density lipoprotein receptor gene expression through the activation of the sterol regulated element binding protein maturation in HepG2 cells. J. Ginseng Res., 29, 159–166 (2005).

    Article  Google Scholar 

  • Liu, H. Y., Collins, Q. F., Xiong, Y., Moukdar, F., Lupo, E. G., Jr., Liu, Z., and Cao, W., Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. J. Biol. Chem., 282, 14205–14212 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Liu, R., Zhang, J., Liu, W., Kimura, Y., and Zheng, Y., Anti-Obesity effects of protopanaxdiol types of Ginsenosides isolated from the leaves of American ginseng (Panax quinquefolius L.) in mice fed with a high-fat diet. Fitoterapia, 81, 1079–1087 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lu, T. T., Makishima, M., Repa, J. J., Schoonjans, K., Kerr, T. A., Auwerx, J., and Mangelsdorf, D. J., Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell, 6, 507–515 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ma, W. G., Mizutani, M., Malterud, K. E., Lu, S. L., Ducrey, B., and Tahara, S., Saponins from the roots of Panax notoginseng. Phytochemistry, 52, 1133–1139 (1999).

    Article  CAS  Google Scholar 

  • Malhi, H., Bronk, S. F., Werneburg, N. W., and Gores, G. J., Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem., 281, 12093–12101 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ni, H. X., Yu, N. J., and Yang, X. H., The study of ginsenoside on PPARγ expression of mononuclear macrophage in type 2 diabetes. Mol. Biol. Rep., 37, 2975–2979 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Pei, D., Lorenz, U., Klingmüller, U., Neel, B. G., and Walsh, C. T., Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. Biochemistry, 33, 15483–15493 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame Hardie, D., Ashworth, A., and Alessi, D. R., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J., 24, 1810–1820 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Sato, K., Mochizuki, M., Saiki, I., Yoo, Y. C., Samukawa, K., and Azuma, I., Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol. Pharm. Bull., 17, 635–639 (1994).

    PubMed  CAS  Google Scholar 

  • Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C., The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310, 1642–1646 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Shultz, L. D., Schweitzer, P. A., Rajan, T. V., Yi, T., Ihle, J. N., Matthews, R. J., Thomas, M. L., and Beier, D. R., Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell, 73, 1445–1454 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Singleton, J. R., Smith, A. G., Russell, J. W., and Feldman, E. L., Microvascular complications of impaired glucose tolerance. Diabetes, 52 2867–2873 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Viollet, B., Foretz, M., Guigas, B., Horman, S., Dentin, R., Bertrand, L., Hue, L., and Andreelli, F., Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J. Physiol., 574, 41–53 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Wei, Y., and Pagliassotti, M. J., Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology, 147, 943–951 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Zhou, L., Li, G., Luo, T., Gu, Y., Qian, L., Fu, X., Li, F., Li, J., and Luo, M., Palmitate activates AMPactivated protein kinase and regulates insulin secretion from β cells. Biochem. Biophys. Res. Commun., 352, 463–468 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. L., Suzuki, R., Lee, K., Tran, T., Gunton, J. E., Saha, A. K., Patti, M. E., Goldfine, A., Ruderman, N. B., Gonzalez, F. J., and Kahn, C. R., Ablation of ARNT/HIF1β in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab., 9, 428–439 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Wei, Y., Wang, D., Topczewski, F., and Pagliassotti, M. J., Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab., 291, E275–E281 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wieckowska, A., Zein, N. N., Yerian, L. M., Lopez, A. R., McCullough, A. J., and Feldstein, A. E., In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology, 44, 27–33 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Winder, W. W. and Holmes, B. F., Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. J. Appl. Physiol., 89, 2430–2437 (2000).

    PubMed  CAS  Google Scholar 

  • Witters, L. A., Kemp, B. E., and Means, A. R., Chutes and Ladders: the search for protein kinases that act on AMPK. Trends Biochem. Sci., 31, 13–16 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Xie, J. T., Wang, C. Z., Wang, A. B., Wu, J., Basila, D., and Yuan, C. S., Antihyperglycemic effects of total ginsenosides from leaves and stem of Panax ginseng. Acta Pharmacol. Sin., 26, 1104–1110 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Yokozawa, T., Kobayashi, T., Oura, H., and Kawashima, Y., Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem. Pharm. Bull., 33, 869–872 (1985).

    PubMed  CAS  Google Scholar 

  • Yoon, M., Lee, H., Jeong, S., Kim, J. J., Nicol, C. J., Nam, K. W., Kim, M., Cho, B. G., and Oh, G. T., Peroxisome proliferator-activated receptor α is involved in the regulation of lipid metabolism by ginseng. Br. J. Pharmacol., 138, 1295–1302 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yuan, H. D., Kim, S. J., and Chung, S. H., Beneficial effects of IH-901 on glucose and lipid metabolisms via activating adenosine monophosphate-activated protein kinase and phosphatidylinositol-3 kinase pathways. Metabolism, 60, 43–51 (2011)

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B. B., Zhou, G., and Li, C., AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab., 9, 407–416 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Kyunn Whang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KT., Jung, T.W., Lee, HJ. et al. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch. Pharm. Res. 34, 1201–1208 (2011). https://doi.org/10.1007/s12272-011-0719-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0719-6

Key words

Navigation