Skip to main content
Log in

Autophagy Inhibition Favors Survival of Rubrospinal Neurons After Spinal Cord Hemisection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injuries (SCIs) are devastating conditions of the central nervous system (CNS) for which there are no restorative therapies. Neuronal death at the primary lesion site and in remote regions that are functionally connected to it is one of the major contributors to neurological deficits following SCI.

Disruption of autophagic flux induces neuronal death in many CNS injuries, but its mechanism and relationship with remote cell death after SCI are unknown. We examined the function and effects of the modulation of autophagy on the fate of axotomized rubrospinal neurons in a rat model of spinal cord dorsal hemisection (SCH) at the cervical level. Following SCH, we observed an accumulation of LC3-positive autophagosomes (APs) in the axotomized neurons 1 and 5 days after injury. Furthermore, this accumulation was not attributed to greater initiation of autophagy but was caused by a decrease in AP clearance, as demonstrated by the build-up of p62, a widely used marker of the induction of autophagy. In axotomized rubrospinal neurons, the disruption of autophagic flux correlated strongly with remote neuronal death and worse functional recovery. Inhibition of AP biogenesis by 3-methyladenine (3-MA) significantly attenuated remote degeneration and improved spontaneous functional recovery, consistent with the detrimental effects of autophagy in remote damage after SCH. Collectively, our results demonstrate that autophagic flux is blocked in axotomized neurons on SCI and that the inhibition of AP formation improves their survival. Thus, autophagy is a promising target for the development of therapeutic interventions in the treatment of SCIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

SCI:

Spinal cord injury

SCH:

Spinal cord hemisection

3-MA:

3-Methyladenine;

Rapa:

Rapamycin

FB:

Fast-blue

RN:

Red nucleus

LC3:

Light chain 3

mTOR:

Mammalian target of rapamycin

APs:

Autophagosomes

AMPK:

Adenosine monophosphate-activated protein kinase

cyt-c:

Cytochrome-c

Comp C:

Compound C

i.c.v.:

Intracerebroventricularly

References

  1. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464. doi:10.1016/j.spinee.2003.07.007

    Article  PubMed  Google Scholar 

  2. Cadotte DW, Fehlings MG (2011) Spinal cord injury: a systematic review of current treatment options. Clin Orthop Relat Res 469(3):732–741. doi:10.1007/s11999-010-1674-0

    Article  PubMed  Google Scholar 

  3. Wu B, Ren X (2009) Promoting axonal myelination for improving neurological recovery in spinal cord injury. J Neurotrauma 26(10):1847–1856. doi:10.1089/neu.2008.0551

    Article  PubMed  Google Scholar 

  4. Bradbury EJ, Carter LM (2011) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 84(4–5):306–316. doi:10.1016/j.brainresbull.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  5. Bonner JF, Steward O (2015) Repair of spinal cord injury with neuronal relays: from fetal grafts to neural stem cells. Brain Res 1619:115–123. doi:10.1016/j.brainres.2015.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramer LM, Ramer MS, Bradbury EJ (2014) Restoring function after spinal cord injury: towards clinical translation of experimental strategies. The Lancet Neurology 13(12):1241–1256. doi:10.1016/S1474-4422(14)70144-9

    Article  PubMed  Google Scholar 

  7. Viscomi MT, Molinari M (2014) Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 50(2):368–389. doi:10.1007/s12035-013-8629-x

    Article  CAS  PubMed  Google Scholar 

  8. Block F, Dihne M, Loos M (2005) Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 75(5):342–365. doi:10.1016/j.pneurobio.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  9. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18. doi:10.1242/jcs.01620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  11. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873. doi:10.1101/gad.1599207

    Article  CAS  PubMed  Google Scholar 

  12. Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, Stefanis L, Tolkovsky A (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1(1):11–22

    Article  CAS  PubMed  Google Scholar 

  13. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997. doi:10.1038/nm.3232

    Article  CAS  PubMed  Google Scholar 

  14. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41(5):1103–1130. doi:10.1042/BST20130134

    Article  CAS  PubMed  Google Scholar 

  15. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  PubMed  Google Scholar 

  16. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis 43(1):38–45. doi:10.1016/j.nbd.2011.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786. doi:10.1038/nature05291

    Article  CAS  PubMed  Google Scholar 

  18. Lipinski MM, Wu J, Faden AI, Sarkar C (2015) Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal 23(6):565–577. doi:10.1089/ars.2015.6306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viscomi MT, D’Amelio M, Cavallucci V, Latini L, Bisicchia E, Nazio F, Fanelli F, Maccarrone M, Moreno S, Cecconi F, Molinari M (2012) Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy 8(2):222–235. doi:10.4161/auto.8.2.18599

    Article  CAS  PubMed  Google Scholar 

  20. Cavallucci V, Bisicchia E, Cencioni MT, Ferri A, Latini L, Nobili A, Biamonte F, Nazio F, Fanelli F, Moreno S, Molinari M, Viscomi MT, D’Amelio M (2014) Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Dis 5:e1545. doi:10.1038/cddis.2014.511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009) Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis 33(2):143–148. doi:10.1016/j.nbd.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  22. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E (2011) Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine 36(22):E1427–E1434. doi:10.1097/BRS.0b013e3182028c3a

    Article  PubMed  Google Scholar 

  23. Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H, Zhang L (2014) Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol 49(1):276–287. doi:10.1007/s12035-013-8518-3

    Article  CAS  PubMed  Google Scholar 

  24. Liu S, Sarkar C, Dinizo M, Faden AI, Koh EY, Lipinski MM, Wu J (2015) Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis 6:e1582. doi:10.1038/cddis.2014.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribas VT, Schnepf B, Challagundla M, Koch JC, Bahr M, Lingor P (2015) Early and sustained activation of autophagy in degenerating axons after spinal cord injury. Brain Pathol 25(2):157–170. doi:10.1111/bpa.12170

    Article  CAS  PubMed  Google Scholar 

  26. Klionsky DJ, Abdalla FC, Abeliovich H, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klionsky DJ, Abdelmohsen K, Abe A, et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. doi:10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chan EY, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282(35):25464–25474. doi:10.1074/jbc.M703663200

    Article  CAS  PubMed  Google Scholar 

  29. Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7(6):643–644

    Article  PubMed  Google Scholar 

  30. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295. doi:10.1016/j.febslet.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. doi:10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang R, Zhang LH, Xie X (2013) iPSCs and small molecules: a reciprocal effort towards better approaches for drug discovery. Acta Pharmacol Sin 34(6):765–776. doi:10.1038/aps.2013.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsubokawa T, Yamaguchi-Okada M, Calvert JW, Solaroglu I, Shimamura N, Yata K, Zhang JH (2006) Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. J Neurosci Res 84(4):832–840. doi:10.1002/jnr.20977

    Article  CAS  PubMed  Google Scholar 

  35. Latini L, Bisicchia E, Sasso V, Chiurchiu V, Cavallucci V, Molinari M, Maccarrone M, Viscomi MT (2014) Cannabinoid CB2 receptor (CB2R) stimulation delays rubrospinal mitochondrial-dependent degeneration and improves functional recovery after spinal cord hemisection by ERK1/2 inactivation. Cell Death Dis 5:e1404. doi:10.1038/cddis.2014.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen HC, Fong TH, Lee AW, Chiu WT (2012) Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury. Spine 37(6):470–475. doi:10.1097/BRS.0b013e318221e859

    Article  CAS  PubMed  Google Scholar 

  37. Hao HH, Wang L, Guo ZJ, Bai L, Zhang RP, Shuang WB, Jia YJ, Wang J, Li XY, Liu Q (2013) Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats. Neurosci Bull 29(4):484–492. doi:10.1007/s12264-013-1355-6

    Article  CAS  PubMed  Google Scholar 

  38. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10(12):2208–2222. doi:10.4161/15548627.2014.981787

    Article  CAS  PubMed  Google Scholar 

  39. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614. doi:10.1083/jcb.200507002

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, Yankner BA, Scherzer CR, Yuan J (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107(32):14164–14169. doi:10.1073/pnas.1009485107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knoferle J, Koch JC, Ostendorf T, Michel U, Planchamp V, Vutova P, Tonges L, Stadelmann C, Bruck W, Bahr M, Lingor P (2010) Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci U S A 107(13):6064–6069. doi:10.1073/pnas.0909794107

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heckmann BL, Yang X, Zhang X, Liu J (2013) The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br J Pharmacol 168(1):163–171. doi:10.1111/j.1476-5381.2012.02110.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marinelli S, Nazio F, Tinari A, Ciarlo L, D’Amelio M, Pieroni L, Vacca V, Urbani A, Cecconi F, Malorni W, Pavone F (2014) The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Pain 155(1):93–107. doi:10.1016/j.pain.2013.09.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Research for Paraplegia (P141 to M.T.V.) and by the Italian Ministry of Health (Ricerca Corrente; to M. M.) and partially by the program Young Researchers of Italian Ministry of Health (GR-2010.2310524 to M.T.V.; GR-2011-02351457 to M.D.). The professional editorial work of Blue Pencil Science is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcello D’Amelio or Maria Teresa Viscomi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Elisa Bisicchia and Laura Latini contributed equally to this work.

Marcello D’Amelio and Maria Teresa Viscomi are equal senior authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisicchia, E., Latini, L., Cavallucci, V. et al. Autophagy Inhibition Favors Survival of Rubrospinal Neurons After Spinal Cord Hemisection. Mol Neurobiol 54, 4896–4907 (2017). https://doi.org/10.1007/s12035-016-0031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0031-z

Keywords

Navigation