Skip to main content

Dealing with Uncertainty Using Fully Probabilistic Risk Assessment for Decision-Making

  • Chapter
  • First Online:
Handbook of Disaster Risk Reduction for Resilience

Abstract

Risk identification is the first step on a comprehensive disaster risk management strategy, and nowadays, when new open-source tools to conduct those analyses are becoming widely available, the interest and need to increase their transparency has increased. Catastrophic risk due to natural hazards should be considered in a prospective way quantifying the damages and losses before the real event occurs, and for that task, it is necessary to consider events that have not yet occurred. Since there are uncertainties related to when and where the next hazardous event will happen, how severe will it be, and how can it affect the exposed elements, it is important to adopt a probabilistic approach that considers those uncertainties and propagates them through the damage and loss calculation process following a rigorous methodology. This chapter develops the theoretical catastrophe risk model considering both retrospective and prospective analyses. In addition, it summarizes the methodology for the inclusion of second-order effects (nonphysical risk drivers), the approach to rationally incorporate background trends (e.g., climate change), an extension of the model to incorporate non-probabilistic uncertainty, and a methodology to define management actions that fit resilience targets. The work presented herein serves to provide a ground base for the minimum requirements of probabilistic risk assessment models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A renewal process is a type of time-continuous, increasing, point process in which the inter-event times are mutually independent and identically distributed random variables, with an expected value equal to the inverse of the mean occurrence rate.

  2. 2.

    Var{Λ} = λ2/(n − 2). The Cramér-Rao Lower Bound CRLB{Λ} = λ2/n.

  3. 3.

    In particular, the increments of the process will not be independent.

  4. 4.

    In both cases for RCP 8.5 and selecting the climate model that best fits the historical observations.

  5. 5.

    See Alvarez (2008) for a summary of techniques to practically apply the extension principle.

  6. 6.

    I[∙] = 1 if ∙ is true and I[∙] = 0 if ∙ is false.

References

  • Alvarez, D. A. (2008). Infinite random sets and applications in uncertainty analysis. Doctoral thesis in Engineering, Leopold-Franzens Universität, Innsbruck.

    Google Scholar 

  • Andersen, E. S. (1957). On the collective theory of risk in case of contagion between claims. Transactions of XVth International Congress of Actuaries, 2(6). New York.

    Google Scholar 

  • Applied Technology Council. (1985). Earthquake damage evaluation data for California. ATC-13.

    Google Scholar 

  • Ben-Haim, Y. (2006). Info-gap decision theory: Decisions under severe uncertainty (2nd ed.). London: Academic Press.

    Google Scholar 

  • Bernal, G. A., Escovar, M. A., Zuloaga, D., & Cardona, O. D. (2017a). Agricultural drought risk assessment in Northern Brazil: An innovative fully probabilistic approach. In V. Marchezini, B. Wiesner, S. Saito, & L. Londe (Eds.), Reduction of vulnerability to disasters: From knowledge to action (pp. 331–356). RiMa Ed.

    Google Scholar 

  • Bernal, G., Salgado-Gálvez, M., Zuloaga, D., Tristanchi, J., González, D., & Cardona, O. D. (2017b). Integration of probabilistic and multi-Hazard risk assessment within urban development planning and emergency preparedness and response: Application to Manizales, Colombia. International Journal of Disaster Risk Science. https://doi.org/10.1007/s13753-017-0135-8.

  • Birkman, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., & Welle, T. (2013). Framing vulnerability, risk and societal responses: The MOVE framework. Natural Hazards, 67(2), 193–211.

    Article  Google Scholar 

  • Burton, C. G., & Silva, V. (2014). Integrated risk modelling within the Global Earthquake Model (GEM): Test case application for Portugal. Proceedings of the Second European Conference on Earthquake Engineering and Seismology, Istanbul.

    Google Scholar 

  • Burton, C. G., Khazai, B., & Silva, V. (2014). Social vulnerability and integrated risk assessment within the Global Earthquake Model. Proceedings of the Tenth U.S. National conference on Earthquake Engineering, Anchorage.

    Google Scholar 

  • Cardona, O. D. (1986). Edtudios de vulnerabilidad y evaluación del riesgo sísmico: Planificación física y urbana en áreas propensas. Asociación Colombiana de Ingeniería Sísmica. Reporte AIS-33. Diciembre, Bogotá.

    Google Scholar 

  • Cardona, O. D. (2001). Holistic evaluation of the seismic risk by using dynamic complex systems (Estimación holística del riesgo sísmico utilizando sistemas dinámicos complejos). Doctoral thesis in Engineering, Universidad Politécnica de Cataluña, Barcelona (in Spanish).

    Google Scholar 

  • Cardona, O. D., Bernal, G., Olaya, J., Mora, G., & Yamín, L. (2013). Estimación de la amenaza y el riesgo probabilista por huracán en Guatemala, incorporando el impacto asociado al cambio climático. CIMNE.

    Google Scholar 

  • Cardona, O. D., Ordaz, M. G., Mora, M., Salgado-Gálvez, M. A., Bernal, G. A., Zuloaga-Romero, D., Marulanda, M. C., Yamín, L., & González, D. (2014). Global risk assessment: A fully probabilistic seismic and tropical cyclone wind risk assessment. International Journal of Disaster Risk Reduction., 10, 461–476.

    Article  Google Scholar 

  • Cardona, O. D, Bernal, G., Zuloaga, D., Escovar, M. A., Villegas, C., Gonzáles, D., & Molina, J. F. (2016). Sistema de Modelación de Amenazas y Riesgos de Bogotá. https://doi.org/10.13140/RG.2.2.31828.60800.

  • Carreño, M. L., Cardona, O. D., & Barbat, A. H. (2007). Urban seismic risk evaluation: A holistic approach. Natural Hazards, 40(1), 137–172.

    Article  Google Scholar 

  • Cramér, H. (1930). On the mathematical theory of risk, Skandia Jubilee volume. Stockholm.

    Google Scholar 

  • Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38, 325–339.

    Article  Google Scholar 

  • Jaimes, M., Reinoso, E., & Esteva, L. (2015). Risk analysis for structures exposed to several multi-Hazard sources. Journal of Earthquake Engineering, 19(2), 297–312. https://doi.org/10.1080/13632469.2014.962673.

    Article  Google Scholar 

  • Jaramillo, N., Carreño, M. L., & Lantada, N. (2016). Evaluation of social context integrated into the study of seismic risk for urban areas. International Journal of Disaster Risk Reduction, 17, 185–198.

    Article  Google Scholar 

  • Jenkins, S. F., Magill, C. R., McAneney, J., & James, B. R. (2012). Regional ash fall hazard I: A probabilistic assessment methodology. Bulletin of Volcanology, 74(7), 1699–1712.

    Article  Google Scholar 

  • Kendall, D. G. (1974). Foundations of a theory of random sets. In E. F. Harding & D. G. Kendall (Eds.), Stochastic geometry (pp. 322–376). London: Wiley.

    Google Scholar 

  • Khazai, B., Burton, C. G., Tormene, P., Power, C., Bernasoocchi, M., Daniell, J. E., Wyss, B., & Henshaw, P. (2014). Integrated risk modelling toolkit and database for earthquake risk assessment. Proceedings of the Second European Conference on Earthquake Engineering and Seismology, Istanbul.

    Google Scholar 

  • Khazai, B., Bendimerad, F., Cardona, O. D., Carreño, M. L., Barbat, A. H., & Burton, C. G. (2015). A guide to measuring urban risk resilience: Principles, tools and practice of urban indicators. Quezon: Earthquake Megacities Initiative.

    Google Scholar 

  • Kirgman, J. (1992). Poisson processes. Ofxord: Clarendon Press.

    Google Scholar 

  • Kohlas, J., & Monney, P. A. (1995). A mathematical theory of hints. An approach to the Dempster-Shafer theory of evidence, volume 425 of lecture notes in economics and mathematical systems. Berlin: Springer-Verlag.

    Google Scholar 

  • Lundberg, F. (1903). Approximerad Framställning av Sannolikehets-funktionen. Återförsäkering av Kollektivrisker. Uppsala: Almqvist & Wiksell.

    Google Scholar 

  • Marchau, V., Walker, W., Bloemen, P., & Popper, S. (2019). Decision making under deep uncertainty. Springer. Open Acces. https://doi.org/10.1007/978-3-030-05252-2.

  • Marulanda, M. C., Carreño, M. L., Cardona, O. D., Ordaz, M. G., & Barbat, A. H. (2013). Probabilistic earthquake risk assessment using CAPRA: Application to the city of Barcelona, Spain. Natural Hazards, 69(1), 59–84.

    Article  Google Scholar 

  • Maskrey, A., Cardona, O. D., Bernal, G., Escovar, M. A., Villegas, C., Grajales, S., & Rincón, D. (2019). Agricultural drought risk: The case of Kazakhstan. Report for the UN Economic and Social Commission for Asia and the Pacific – ESCAP.

    Google Scholar 

  • Matheron, G. (1975). Random sets and integral geometry. New York: Wiley.

    Google Scholar 

  • Molchanov, I. (2005). Theory of random sets. London: Springer Verlag.

    Google Scholar 

  • Möller, B., & Beer, M. (2004). Fuzzy randomness – Uncertainty in civil engineering and computational mechanics. Berlin: Springer.

    Google Scholar 

  • Nelsen, R. B. (1999). An introduction to copulas, volume 139 of lectures notes in statistics. New York: Springer Verlag.

    Book  Google Scholar 

  • Niño, M., Jaimes, M., & Reinoso, E. (2015). Seismic-event-based methodology to obtain earthquake induced translational landslide regional hazard maps. Natural Hazards, Springer Ed. https://doi.org/10.1007/s11069-014-1163-y.

  • Ordaz, M. (2000). Metodología para la evaluación del riesgo sísmico enfocada a la gerencia de seguros por terremoto. México: Universidad Nacional Autónoma de México. México D.F.

    Google Scholar 

  • Ordaz, M. G. (2014). A simple probabilistic model to combine losses arising from the simultaneous occurrence of several hazards. Natural Hazards. https://doi.org/10.1007/s11069-014-1495-7.

  • Quijano, J. A., Jaimes, M. A., Torres, M. A., Reinoso, E., Castellanos, L., Escamilla, J., & Ordaz, M. (2014). Event-based approach for probabilistic agricultural drought risk assessment under rainfed conditions. Natural Hazards, 76, 1297–1318. https://doi.org/10.1007/s11069-014-1550-4.

    Article  Google Scholar 

  • Salgado-Gálvez, M. A., Zuloaga, D., Bernal, G., Mora, M. G., & Cardona, O. D. (2014). Fully probabilistic seismic risk assessment considering local site effects for the portfolio of buildings in Medellín, Colombia. Bulletin of Earthquake Engineering, 12, 671–695.

    Article  Google Scholar 

  • Salgado-Gálvez M. A., Cardona O. D., Carreño M. L., & Barbat, A. H. (2015). Probabilistic seismic hazard and risk assessment in Spain. Monographs on earthquake engineering. International Center for Numerical Methods in Engineering – CIMNE. ISBN: 978–84–993307-7-3.

    Google Scholar 

  • Salgado-Gálvez, M. A., Zuloaga, D., Velásquez, C. A., Carreño, M. L., Cardona, O. D., & Barbat, A. H. (2016). Urban seismic risk index for Medellin, Colombia, based on probabilistic loss and casualties’ estimations. Natural Hazards, 80(3), 1995–2021.

    Article  Google Scholar 

  • Salgado-Gálvez, M., Bernal, G., Zuloaga, D., Marulanda, M., Cardona, O. D., & Henao, S. (2017). Probabilistic seismic risk assessment in Manizales, Colombia: Quantifying losses for insurance purposes. International Journal of Disaster Risk Science. https://doi.org/10.1007/s13753-017-0137-6.

  • Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Soong, T. T. (2004). Fundamentals of probability & statistics for engineers. New York: Wiley.

    Google Scholar 

  • Torres, M. A., Jaimes, M. A., Reinoso, E., & Ordaz, M. (2013). Event-based approach for probabilistic flood risk assessment. International Journal of River Basin Management, 2013, 1–13.

    Google Scholar 

  • UNISDR. (2017). GAR atlas: Unveiling global disaster risk. Geneva: United Nations Office for Disaster Risk Reduction.

    Google Scholar 

  • Velásquez, C. A. (2015). La curva híbrida de riesgo: análisis retrospectivo y prospectivo del riesgo por fenómenos naturales. Ph.D. thesis. Polytechnic University of Catalonia, Barcelona.

    Google Scholar 

  • Velásquez, C. A., Cardona, O. D., Mora, M. G., Yamín, L. E., Carreño, M. L., & Barbat, A. H. (2014). Hybrid loss exceedance curve (HLEC) for disaster risk assessment. Natural Hazards., 72, 455–479.

    Article  Google Scholar 

  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.

    Book  Google Scholar 

  • Wong, I. G. (2014). How big, how bad, how often: Are extreme events accounted for in modern seismic hazard analysis? Natural Hazards, 72(3), 1299–1309. https://doi.org/10.1007/s11069-013-0598-x.

    Article  Google Scholar 

  • Yousefi, N., Safaee, A., & Eslamian, S. (2015). The optimum design of flood control system using multivariate decision making methods (Case study: Kan River Catchment Basin, Iran). Journal of Flood Engineering, 6(1), 63–82.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar-Darío Cardona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernal, G.A., Cardona, OD., Marulanda, M.C., Carreño, ML. (2021). Dealing with Uncertainty Using Fully Probabilistic Risk Assessment for Decision-Making. In: Eslamian, S., Eslamian, F. (eds) Handbook of Disaster Risk Reduction for Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-61278-8_14

Download citation

Publish with us

Policies and ethics