Skip to main content

Microbial Bioremediation of Pesticides/Herbicides in Soil

  • Chapter
  • First Online:
Microbiota and Biofertilizers, Vol 2

Abstract

Irrational and hasty worldwide human societal development has ended up in a condition of ecological disintegration. Extreme utilization of pesticides has been known to be dangerous to the earth, have an effect on soil fertility, also may impart toxicity in body. The term “bioremediation” has been understood to describe the process of using biological agents to remove toxic wastes from the habitat. Microbial bioremediation has been the most understood biotechnological process of ecological reclamation. Under favorable conditions, microbes utilize pesticides as a source of carbon, sulfur, as well as electrons. The toxic effects of chlorine-containing pesticides, polychlorinated diphenyls, polycyclic aromatic hydrocarbons, and organic phosphorous compounds have been shown to be wiped out by microbes, including bacteria, actinomycetes, and fungi. This chapter intends to review pesticides, their types, versatility, ecological concerns associated to them, and the recent literature concerning descriptive information of various microorganisms involved in bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) Application of microorganisms in bioremediation-review. J Environ Microbiol 1:2–9

    Google Scholar 

  • Abtahi H, Parhamfar M, Saeedi R, Villaseñor J, Sartaj M, Kumar V, Coulon F, Parhamfar M, Didehdar M, Koolivand A (2020) Effect of competition between petroleum-degrading bacteria and indigenous compost microorganisms on the efficiency of petroleum sludge bioremediation: field application of mineral-based culture in the composting process. J Environ 258:110–013

    Google Scholar 

  • Agrawal C, Sen S, Yadav S, Rai S, Rai LC (2015) A novel aldo-keto reductase (AKR17A1) of Anabaena sp PCC 7120 degrades the rice field herbicide butachlor and confers tolerance to abiotic stresses in E. coli. PLoS One 10(9):e0137744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alberty RA (2006) Biochemical reactions at specified temperature and various pHs. Biochemical thermodynamics. Wiley, Cambridge, pp 43–70

    Google Scholar 

  • Aleem A, Isar J, Malik A (2003) Impact of long term application of industrial wastewater on the emergence of resistance traits of Azotobacter vinelandii isolated from rhizosphere soil. Bioresour Technol 86:7–13

    Article  CAS  PubMed  Google Scholar 

  • Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manag 60:758–783

    Article  Google Scholar 

  • Anderson SE, Meade BJ (2014) Potential health effects associated with dermal exposure to occupational chemicals. Environ. Health Insights 8:51–62

    Google Scholar 

  • Anon (2004) The World Health Organization. WHO, Geneva. Available at: http://www.who.int/mediacentre/news/releases/ 2006/pr50/en/index.htmlS

  • Arensdorf JJ, Focht DD (1995) A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Appl Environ Microbiol 61:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad M, Hussain S, Saleem M (2007) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. Appl Microbiol 104:364–370

    Google Scholar 

  • Audus LJ (1951) The biological detoxication of hormone herbicides in soil. Plant Soil Environ 3:170–192

    Article  CAS  Google Scholar 

  • Ausmees NR, Kheĭnaru AL (1990) New plasmids of herbicide 2, 4-dichlorophenoxyacetic acid biodegradation. Genetika 26:770–772

    CAS  PubMed  Google Scholar 

  • Balajee S, Mahadevan A (1990) Dissimilation of 2, 4-dichlorophenoxyacetic acid by Azotobacter chroococcum. Xenobiotica 20:607–617

    Article  CAS  PubMed  Google Scholar 

  • Baxter J, Cummings SP (2006) The application of the herbicide Bromoxynil to a model soil-derived bacterial community: impact on degradation and community structure. Lett Appl Microbiol 43:659–665

    Article  CAS  PubMed  Google Scholar 

  • Behki RM, Khan SU (1986) Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J Agric Food Chem 34:746–749

    Article  CAS  Google Scholar 

  • Behki R, Topp E, Dick W, Germon P (1993) Metabolism of the herbicide atrazine by Rhodococcus strains. Appl Environ Microbiol 59:1955–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellinaso MD, Greer CW, Peralba MD, Henriques JAP, Gaylarde CC (2003) Biodegradation of the herbicide trifluralin by bacteria isolated from soil. FEMS Microbiol Ecol 43:191–194

    Article  CAS  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017a) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Shafiq-ur-Rehman, Mehmood MA, Dervash MA, Mushtaq N, Bhat JIA, Dar GH (2017b) Current status of nutrient load in Dal Lake of Kashmir Himalaya. J Pharmacogn Phytochem 6(6):165–169

    CAS  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018a) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, pp 387–407

    Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018b) Macrophytes, the natural cleaners of Toxic Heavy Metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, U.K, pp 189–209

    Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Briglia M, Eggen RIL, van Elsas DJ, de Vos WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCPI to the genus Mycobacterium. Int J Sys Bacteriol 44:494–498

    Article  CAS  Google Scholar 

  • Burge WD (1969) Populations of dalapon-decomposing bacteria in soil as influenced by additions of dalapon or other carbon sources. Appl Microbiol 17:545–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bwapwa JK, Jaiyeola AT, Chetty R (2017) Bioremediation of acid mine drainage using algae strains: a review. S Afr J Chem Eng 24:62–70

    Google Scholar 

  • Cai B, Han Y, Liu B, Ren Y, Jiang S (2003) Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 36:272–276

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Reddy MV, Umemoto H, Sato Y, Kang MH, Yajima Y, Kikuchi S (2015) Bio-augmentation of Cupriavidus sp. CY-1 into 2,4-D contaminated soil: microbial community analysis by culture dependent and independent techniques. PLoS One 10:e0145057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhry GR, Huang GH (1988) Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2, 4-dichlorophenoxyacetate. J Bacteriol 170:3897–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaw D, Stoklas U (2013) Cocomposting of cattle manure and hydrocarbon contaminated flare pit soil. Compost Sci Util 9:322–335

    Article  Google Scholar 

  • Chen WM, Tang YQ, Mori K, Wu XL (2012) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15:99–110

    Article  Google Scholar 

  • Chinalia FA, Regali-Seleghin MH, Corre EM (2007) 2,4-D toxicity: cause, effect and control. Terr Aquat Environ Toxicol 1:24–33

    Google Scholar 

  • Chu JP, Kirsch EJ (1972) Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol 23:1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cycoń M, Żmijowska A, Piotrowska-Seget Z (2011) Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil. Open Life Sci 6:188–198

    Article  CAS  Google Scholar 

  • Dai Y, Li N, Zhao Q, Xie S (2015) Bioremediation using Novosphingobium strain DY4 for 2, 4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 26:61–170

    Article  CAS  Google Scholar 

  • Daley JM, Leadley TA, Drouillard KG (2009) Evidence for bioamplification of nine polychlorinated biphenyl (PCB) congeners in yellow perch (Perca flavascens) eggs during incubation. Chemosphere 75:1500–1505

    Article  CAS  PubMed  Google Scholar 

  • Dar S, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 293–318

    Chapter  Google Scholar 

  • Dar GH, Bandh SA, Kamili AN, Nazir R, Bhat RA (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir valley India. Ecologia Balkanica 5(1):31–35

    Google Scholar 

  • Dar GH, Kamili AN, Chishti MZ, Dar SA, Tantry TA, Ahmad F (2016) Characterization of Aeromonas sobria isolated from fish Rohu (Labeo rohita) collected from polluted pond. J Bacteriol Parasitol 7(3):1–5. https://doi.org/10.4172/2155-9597.1000273

    Article  CAS  Google Scholar 

  • Dar GH, Bhat RA, Kamili AN, Chishti MZ, Qadri H, Dar R, Mehmood MA (2020) Correlation between pollution trends of fresh water bodies and bacterial disease of fish Fuana. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 51–68

    Chapter  Google Scholar 

  • DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20:84–98

    Article  CAS  PubMed  Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat RA, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Dar GH. Springer Nature, Singapore, pp 183–196

    Chapter  Google Scholar 

  • Dijkgraaf E, Vollebergh HRJ (2004) Burn or bury? A social cost comparison of final waste disposal methods. Ecol Econ 50:233–247

    Article  Google Scholar 

  • Ditzelmüller G, Loidl M, Streichsbier F (1989) Isolation and characterization of a 2, 4-dichlorophenoxyacetic acid-degrading soil bacterium. Appl Microbiol Biotechnol 31:93–96

    Article  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2, 4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161:85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Luo K, Bai L, Zhou X, Zeng A (2013) Isolation, identification and characterization of an Alcaligenes strain capable of degrading quinclorac. Chin J Pesticide Sci 15:316–322

    CAS  Google Scholar 

  • Engelhardt G, Ziegler W, Wallnöfer PR, Jarczyk HJ, Oehlmann L (1982) Degradation of the triazinone herbicide metamitron by Arthrobacter sp. DSM 20389. J Agric Food Chem 30:278–282

    Article  CAS  Google Scholar 

  • Fadullon FS, Karns JS, Torrents A (1998) Degradation of atrazine in soil by Streptomyces. J Environ Sci Health B 33:37–49

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Bo L, Liu M, Zhou X, Ren Z, Dong J, Sun L, Liu E (2013) Isolation, identification and degradation characteristics of quinclorac-degrading strain QC06. Chin J Biol Control 29:431–436

    Google Scholar 

  • Filer K, Harker AR (1997) Identification of the inducing agent of the 2,4-Dichlorophenoxyacetic acid pathway encoded by plasmid pJP4. Appl Environ Microbiol 63:317–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Food and Agriculture Organization and US Environmental Protection Agency (FAO and US EPA) (2014) The International Code of Conduct on Pesticide Management. WHO and US EPA, pp 8–10.

    Google Scholar 

  • Foster LJR, Kwan BH, Vancov T (2004) Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiol Lett 240:49–53

    Article  CAS  PubMed  Google Scholar 

  • Gaunt JK, Evans WC (1971) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Preliminary evidence for the metabolic pathway. Biochem J 122:51–526

    Google Scholar 

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16:180–193

    Article  CAS  PubMed  Google Scholar 

  • González AJ, Gallego A, Gemini VL, Papalia M, Radice M, Gutkind G, Planes E, Korol SE (2012) Degradation and detoxification of the herbicide 2, 4-dichlorophenoxyacetic acid (2, 4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int Biodeterior Biodegradation 66:8–13

    Article  CAS  Google Scholar 

  • González-Cuna S, Galíndez-Mayer J, Ruiz-Ordaz N, Murugesan S, Piña-Escobedo A, García-Mena J, Lima-Martínez E, Santoyo-Tepole F (2016) Aerobic biofilm reactor for treating a commercial formulation of the herbicides 2,4-D and dicamba, biodegradation kinetics and biofilm bacterial diversity. Int Biodeterior Biodegrad 107:123–131

    Article  CAS  Google Scholar 

  • Grant RJ, Betts WB (2004) Mineral and carbon usage of two synthetic pyrethroid degrading bacterial isolates. J Appl Microbiol 97:656–662

    Article  CAS  PubMed  Google Scholar 

  • Guarino C, Spada V, Sciarrillo R (2017) Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation–assistited landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170:10–16

    Article  CAS  PubMed  Google Scholar 

  • Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51

    Article  CAS  PubMed  Google Scholar 

  • Hamada M, Matar A, Bashir A (2015) Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip. Braz J Microbiol 46:1087–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Liu Y, He A, Zhao D (2014) 16S rRNA gene phylogeny and tfdA gene analysis of 2, 4-D-degrading bacteria isolated in China. World J Microbiol Biotechnol 30:2567–2576

    Article  CAS  PubMed  Google Scholar 

  • Han L, Zhao D, Li C (2015) Isolation and 2, 4-D-degrading characteristics of Cupriavidus campinensis BJ71. Braz J Microbiol 46:433–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Haugland RA, Schlemm DJ, Lyons RP, Sferra PR, Chakrabarty AM (1990) Degradation of the chlorinated phenoxyacetate herbicides 2, 4-dichlorophenoxyacetic acid and 2, 4, 5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl Environ Microbiol 56:1357–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández M, Villalobos P, Morgante V, González M, Reiff C, Moore E, Seeger M (2008) Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of Central Chile, Pseudomonas sp. MHP41. FEMS Microbiol Lett 206:184–190

    Article  CAS  Google Scholar 

  • Hong Q, Zhang ZH, Hong YF, Li SP (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegrad 59:55–61

    Article  CAS  Google Scholar 

  • Horemans B, Vandermaesen J, Vanhaecke L, Smolders E, Springael D (2013) Variovorax sp. mediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source. Appl Microbiol Biotechnol 97:9837–9846

    Article  CAS  PubMed  Google Scholar 

  • Horvath RS (1970) Microbial cometabolism of 2, 4, 5-trichlorophenoxyacetic acid. B Environ Contam Tox 5:537–541

    Article  CAS  Google Scholar 

  • Horvath M, Ditzelmüller G, Loidl M, Streichsbier F (1990) Isolation and characterization of a 2-(2,4-dichlorophenoxy) propionic acid-degrading soil bacterium. Appl Microbiol Biotechnol 33:213–216

    Article  CAS  PubMed  Google Scholar 

  • Howell CC, Semple KT, Bending GD (2014) Isolation and characterization of azoxystrobin degrading bacteria from soil. Chemosphere 95:370–378

    Article  CAS  PubMed  Google Scholar 

  • Hugo HJ, Mouton C, Malan AP (2014) Accelerated microbial degradation of nematicides in vineyard and orchard soils. S Afr J Enol Vitic 35:157–167

    Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Igbinosa O, Ajisebutu OS, Okoh IA (2007a) Aerobic dehalogenation activities of two petroleum degrading bacteria. Afr J Biotechnol 6(7):897

    Google Scholar 

  • Igbinosa OE, Ajisebutu OS, Okoh IA (2007b) Studies on aerobic biodegradation activities of 2, 4-dichlorophenoxyacetic acid by bacteria species isolated from petroleum polluted site. Afr J Biotechnol 6(12):1426

    Google Scholar 

  • Imam A, Suman SK, Ghosh D, Kanaujia PK (2019) Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. Trac-Trend Anal Chem 118:50–64

    Article  CAS  Google Scholar 

  • Iwasaki A, Takagi K, Yoshioka Y, Fujii K, Kojima Y, Harada N (2007) Isolation and characterization of a novel simazine-degrading β- proteobacterium and detection of genes encodings-triazine-degrading enzymes. Pest Manag Sci 63:261–268

    Article  CAS  PubMed  Google Scholar 

  • Jensen HL, Petersen HI (1952) Decomposition of hormone herbicides by bacteria. Acta Agric Scand 2:215–231

    Article  CAS  Google Scholar 

  • Jin JJ, Wang ZS, Ran SH (2006) Solid waste management in Macao practices and challenges. J Waste Manag 26:1045–1051

    Article  Google Scholar 

  • Johnson BT, Goodman RN, Goldberg HS (1967) Conversion of DDT to DDD by pathogenic and saprophytic bacteria associated with plants. Science 157:560–561

    Article  CAS  PubMed  Google Scholar 

  • Ka JO, Holben WE, Tiedje JM (1994) Genetic and phenotypic diversity of 2, 4-dichlorophenoxyacetic acid (2, 4-D)-degrading bacteria isolated from 2, 4-D-treated field soils. Appl Environ Microbiol 60:1106–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman DD (1967) Degradation of carbamate herbicides in soil. J Agric Food Chem 15:582–591

    Article  CAS  Google Scholar 

  • Khalil AB (2003) Isolation and characterization of 2, 4-dichlorophenoxyacetic acid degrading organisms from soil in Jordan Valley. Biotechnology 2:73–85

    Article  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Cham, pp 317–332

    Chapter  Google Scholar 

  • Kilpi S, Backström V, Korhola M (1983) Degradation of catechol, methylcatechols and chlorocatechols by Pseudomonas sp. HV3. FEMS Microbiol Lett 18:1–5

    Article  CAS  Google Scholar 

  • Kitagawa W, Takami S, Miyauchi K, Masai E, Kamagata Y, Tiedje JM, Fukuda M (2002) Novel 2, 4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J Bacteriol 184:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinsteuber S, Müller RH, Babel W (2001) Expression of the 2, 4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 5:375–384

    Article  CAS  PubMed  Google Scholar 

  • Kohler EHP (1999) Sphingomonas herbicidovorans MH: a versatile phenoxyalkanoic acid herbicide degrader. J Ind Microbiol Biotechnol 23:336–340

    Article  CAS  PubMed  Google Scholar 

  • Kole RK, Banerjee H, Bhattacharyya A, Chowdhury A, Aditya Chaudhury N (1999) Photo transformation of some pesticides. J Indian Chem Soc 76:595–600

    CAS  Google Scholar 

  • Kopytko M, Chalela G, Zauscher F (2002) Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida. Electron J Biotechnol 5:182–195

    Article  Google Scholar 

  • Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel pyrethroid hydrolas from Aspergillus niger ZD11. J Agric Food Chem 53:7415–7420

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Luo K, Wang YS, Zeng AP, Zhou XM, Luo F, Bai LY (2014) Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3. PLoS One 9:e108012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loos MA, Bollag JM, Alexander M (1967a) Phenoxyacetate herbicide detoxication by bacterial enzymes. J Agric Food Chem 15:858–860

    Article  CAS  Google Scholar 

  • Loos MA, Roberts RN, Alexander M (1967b) Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter species. Can J Microbiol 13:679–690

    Article  CAS  PubMed  Google Scholar 

  • Lü Z, Min H, Wu S, Ruan A (2003) Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac. J Environ Sci Health B 38:771–782

    Article  PubMed  CAS  Google Scholar 

  • Luan TG, Keith SH, Zhong Y, Zhou HW, Lan CY, Tam NF (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons pahs by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289–2296

    Article  CAS  PubMed  Google Scholar 

  • Mahro B, Müller R, Kasche V (2001) Bioavailability-the key factor of soil bioremediation. Treat Contam Soil 01:181–195

    Article  Google Scholar 

  • Maksymiv I (2015) Pesticides: benefits and hazards. J Vasyl Stefanyk Precarpathian National Univ 2:70–76

    Article  Google Scholar 

  • Mandelbaum RT, Wackett LP, Allan DL (1993) Mineralization of the s-triazine by stable bacterial mixed cultures. Appl Environ Microbiol 59:1695–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markusheva TV, Zhurenko EY, Galkin EG, Korobov VV, Zharikova NV, Gafiyatova LR (2004) Identification and characterization of a plasmid in strain Aeronomas hydrophila IBRB-36 4CPA carrying genes for catabolism of chlorophenoxyacetic acids. Russ J Genet 40:1210–1214

    Article  CAS  Google Scholar 

  • Marriott MW, Smejkal CW, Lappin-Scott HM (2000) Biodegradation of mixtures of chlorophenoxyalkanoic acid herbicides by Alcaligenes denitrificans. J Ind Microbiol 25:255–259

    CAS  Google Scholar 

  • Martin XM, Sumathi CS, Kannan VR (2011) Influence of agrochemical and Azotobacter spp. application on soil fertility in relation to maize growth under nursery conditions. Eurasian. J Biosci 5:19–28

    Google Scholar 

  • Mastronicolis SK, German JB, Megoulas N, Petrou E, Foka P, Smith GM (1998) Influence of cold shock on the fatty-acid composition of different lipid classes of the food-borne pathogen Listeria monocytogenes. Food Microbiol 15:299–306

    Article  CAS  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH, Shafiq-ur-Rehman (2019) Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess Environ 191:104. https://doi.org/10.1007/s10661-019-7245-2

    Article  CAS  Google Scholar 

  • Miller GT (2004) Sustaining the earth, chapter 9. Thompson Learning, Inc, Pacific Grove, pp 211–216

    Google Scholar 

  • Miwa N, Takeda Y, Kuwatsuka S (1988) Plasmid in the degrader of the herbicide thiobencarb (Benthiocarb) isolated from soil. A possible mechanism for enrichment of pesticide degraders in soil. J Pestic Sci 13:291–293

    Article  CAS  Google Scholar 

  • Morillo E, Villaverde J (2017) Advanced technologies for the remediation of pesticide contaminated soils. Sci Total Environ 586:576–597

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge,UK, pp 152–178

    Google Scholar 

  • Mushtaq N, Singh DV, Bhat RA, Dervash MA, Hameed UB (2020) Freshwater contamination: sources and hazards to aquatic biota. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 27–50

    Chapter  Google Scholar 

  • Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TK, Xu ZF, Gözdereliler E, Aamand J, Hansen L, Sørensen SR (2013) Novel insight into the genetic context of the cadAB genes from a 4-chloro-2 methylphenoxyacetic acid-degrading Sphingomonas. PLoS One 8:e83346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noh SJ, Kim Y, Min KH, Karegoudar TB, Kim CK (2000) Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. Mol Cell 10:475–479

    CAS  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambie 26:27–38

    Google Scholar 

  • Paingankar M, Jain M, Deobagkar D (2005) Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnol Lett 27:1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Pankaj P, Sharma A, Gangola S, Khati P, Kumar G, Srivastava A (2016) Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field. Biotech 6:45

    CAS  Google Scholar 

  • Pascal-Lorber S, Laurent F (2011) Phytoremediation techniques for pesticide contaminations. In: Lichtfouse E (ed) Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Sustainable agriculture reviews, vol 6. Springer, Dordrecht

    Google Scholar 

  • Pieper DH, Reineke W, Engesser KH, Knackmuss HJ (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150:95–102

    Article  CAS  Google Scholar 

  • Pohlenz HD, Boidol W, Schüttke I, Streber WR (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J Bacteriol 174:6600–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan X, Ma J, Xiong W, Wang X (2015) Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2 dichlorophenoxyacetic acid degrading aerobic granules. Bioprocess Biosyst Eng 38:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Quintella CM, Mata AM, Lima LC (2019) Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. J Environ Manag 241:156–166

    Article  CAS  Google Scholar 

  • Ramanand K, Sharmila M, Singh N, Sethunathan N (1991) Metabolism of carbamate insecticides by resting cells and cell-free preparations of a soil bacterium, Arthrobacter sp. B Environ Contam Tox 46:380–386

    Article  CAS  Google Scholar 

  • Rani MS, Lakshmi KV, Devi PS, Madhuri RJ, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:26–31

    Google Scholar 

  • Reiner EA, Chu J, Kirsch EJ (1978) Microbial metabolism of pentachlorophenol. In: Rao KR (ed) Environmental science research, vol 12. Pentachlorophenol: chemistry, pharmacology and environmental toxicology. Plenum Press, New York, p 67

    Chapter  Google Scholar 

  • Reinhardt EL, Ramos PL, Manfio GP, Barbosa HR, Pavan C, Filho CAM (2008) Molecular characterization of nitrogen fixing bacteria isolated from Brazilian agricultural plants at also Paulo state. Brazilian J Microb 39:414–422

    Article  Google Scholar 

  • Romeh AA (2014) Phytoremediation of cyanophos insecticide by Plantago major L. in water. J Environ Health Sci 12:38

    CAS  Google Scholar 

  • Roser M, Ritchie H (2017) Yields and land use in agriculture. Our World in Data

    Google Scholar 

  • Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterization of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36:211–222

    Article  CAS  PubMed  Google Scholar 

  • Sachin DN (2009) Effect of Azotobacter chroococcum (PGPR) on the growth of bamboo (Bambusa bamboo) and maize (Zea mays) plants. Biofrontiers 1:24–31

    Google Scholar 

  • Saikia N, Das SK, Patel BKC, Niwas R, Singh A, Gopal M (2005) Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1. Biodegradation 16:581–589

    Article  CAS  PubMed  Google Scholar 

  • Sartoros C, Yerushalmi L, Béron P, Guiot SR (2015) Effects of surfactant and temperature on biotransformation kinetics of Anthracene and Pyrene. Chemosphere 61:1042–1050

    Article  CAS  Google Scholar 

  • Schroll R, Becher HH, Dorfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40:3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Shimojo M, Kawakami M, Amada K (2009) Analysis of genes encoding the 2, 4-dichlorophenoxyacetic acid-degrading enzyme from Sphingomonas agrestis 58-1. J Biosci Bioeng 108:56–59

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT (2002) Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and soil slurry. J Agric Food Chem 50:5070–5076

    Article  CAS  PubMed  Google Scholar 

  • Silva TM, Stets MI, Mazzetto AM, Andrade FD, Pileggi SA, Fávero PR, Cantú MD, Carrilho E, Carneiro PI, Pileggi M (2007) Degradation of 2, 4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz J Microbiol 38:522–525

    Article  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Singh PP, Tripathi V, Verma H, Singh SK, Srivastava AK, Kumar A (2018) Distribution of cyanobacteria and their interactions with pesticides in paddy field: a comprehensive review. J Environ Manag 224:361–375

    Article  CAS  Google Scholar 

  • Singh RK, Tripathi R, Ranjan A, Srivastava AK (2020a) Fungi as potential candidates for bioremediation. In: Abatement of environmental pollutants. Elsevier, Amsterdam/Oxford/Cambridge, pp 177–191

    Chapter  Google Scholar 

  • Singh DV, Bhat RA, Dervash MA, Qadri H, Mehmood MA, Dar GH, Hameed M, Rashid N (2020b) Wonders of nanotechnology for remediation of polluted aquatic environs. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 319–339

    Chapter  Google Scholar 

  • Staley ZR, Harwood VJ, Rohr JR (2015) A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Crit Rev Toxicol 45:813–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Hu QL, Xiong XY, Su XJ, Huang YN, Jiang ZW, Zhou QM, Zhao SY, Zeng WA (2013) Isolation and characterization of a novel 2-methyl-4-chlorophenoxyacetic acid-degrading Enterobacter sp. strain SE08. Ecotoxicol Environ Saf 96:198–204

    Article  CAS  PubMed  Google Scholar 

  • Tewari L, Saini J, Arti (2012) Bioremediation of pollutants. I.K. International Publishing House Pvt. Ltd, New Delhi

    Google Scholar 

  • Thiel M, Kaschabek SR, Gröning J, Mau M, Schlömann M (2005) Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 183:80–94

    Article  CAS  PubMed  Google Scholar 

  • Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000) Characterization of striazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol 66:3134–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Environmental Protection Agency (2012) (http://www.epa.gov/)

  • Vedler E, Vahter M, Heinaru A (2004) The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2, 4-dichlorophenoxyacetic acid degradation. J Bacteriol 186:7161–7174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang C, Li A, Gao J (2015) Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae DH19. Lett Appl Microbiol 61:403–410

    Article  CAS  PubMed  Google Scholar 

  • Warren GF (1998) Spectacular increases in crop yields in the United States in the twentieth century. Weed Technol 12:752–760

    Article  Google Scholar 

  • Webster JPG, Bowles RG, Williams NT (1999) Estimating the economic benefits of alternative pesticide usage scenarios: wheat production in the United Kingdom. J Crop Prod 18:83–89

    Article  Google Scholar 

  • Wu TM, Lin WR, Kao YT, Hsu YT, Yeh CH, Hong CY, Kao CH (2013) Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Mol Biol 83:379–390

    Article  CAS  PubMed  Google Scholar 

  • Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD (2017) Biodegradation of the herbicide 2, 4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Curr Microbiol 74:193–202

    Article  CAS  PubMed  Google Scholar 

  • Xu Sx, Zhou J, Huang N, Hs LIU, Hb FENG, Jf HAN (2012) On the way of isolating, identifying and characterization of quinclorac-degrading bacterium HN36. J Safety Environ 2:45–49.

    Google Scholar 

  • Yanze-Kontchou C, Gschwind N (1994) Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl Environ Microbiol 60:4297–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabaloy MC, Gómez MA (2014) Isolation and characterization of indigenous 2, 4-D herbicide degrading bacteria from an agricultural soil in proximity of Sauce Grande River, Argentina. Ann Microbiol 64:969–974

    Article  CAS  Google Scholar 

  • Zhao S, Arthur EL, Moorman TB, Coats JR (2005) Evaluation of microbial inoculation and vegetation to enhance the dissipation of atrazine and metolachlor in soil. Environ Toxicol Chem 24(10):2428–2434

    Article  CAS  PubMed  Google Scholar 

  • Zipper C, Bunk M, Zehnder AJ, Kohler HPE (1998) Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2, 4-dichlorophenoxy) propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol 180:3368–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, M.S., Tantray, Y.R., Malik, N.A., Dar, M.I., Ahmad, T. (2021). Microbial Bioremediation of Pesticides/Herbicides in Soil. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_2

Download citation

Publish with us

Policies and ethics