Skip to main content

Decomposition as a Process—some Main Features

  • Chapter
  • First Online:
Plant Litter

Abstract

We introduce the principles and central processes for litter decomposition. We focus on two general pathways for decomposition: a three-stage and a two-stage model, giving sequences of distinct steps in the decomposition process, and highlighting some of the principal rate-regulating factors. In the early stage (three-stage model) solubles and non-lignified holocellulose are degraded, but the decomposition is limited by access to the main nutrients nitrogen (N), phosphorus (P), sulfur (S) and by climate. The late stage encompasses the lignified litter tissue and includes a shift in rate-regulating factors. In this stage N has a rate-suppressing effect and manganese (Mn) a rate-enhancing effect. In contrast, the two-stage model describes just lignified tissue, limited by Mn availability. As decomposition proceeds, the rate often decreases and approaches zero, resulting in a limit value with the decomposition rate falling to nearly zero. This limit value can be estimated, allowing us to distinguish a ‘stable’ litter fraction. For pine and spruce needle litter, model substrates, the limit value is higher, and the ‘stable’ fraction is smaller the higher the litter Mn concentration. The long-term stability of this ‘stable’ fraction is not known, but the stability may be increased by a higher N concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208

    Article  Google Scholar 

  • Averill C,  Waring B (2018) Nitrogen limitation of decomposition and decay: how can it occur? Glob Change Biol 24:1417–1427. https://doi.org/10.1111/gcb.13980

    Article  Google Scholar 

  • Axelsson G, Berg B (1988) Fixation of ammonia (15N) to Scots pine needle litter in different stages of decomposition. Scand J For Res 3:273–280

    Article  Google Scholar 

  • Berg B (1988) Dynamics of nitrogen (15N) in decomposing Scots pine (Pinus silvestris L.) needle litter. Long-term decomposition in a Scots pine forest VI. Can J Bot 66:1539–1546

    Article  CAS  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Article  Google Scholar 

  • Berg B, Lundmark J-E (1987) Decomposition of needle litter in lodgepole pine and Scots pine monocultures—a comparison. Scand J For Res 2:3–12

    Article  Google Scholar 

  • Berg B, Matzner E (1997) The effect of N deposition on the mineralization of C from plant litter and humus. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes in Scots pine needle litter. II. Influence of chemical composition. Ecol Bull (Stockh) 32:373–390

    CAS  Google Scholar 

  • Berg B, Hannus K, Popoff T, Theander O (1982) Changes in organic-chemical components during decomposition. Long-term decomposition in a Scots pine forest I. Can J Bot 60:1310–1319

    Article  CAS  Google Scholar 

  • Berg B, Berg M, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Couteaux M, Gallardo A, Escudero A, Kratz W, Madeira M, Mälkönen E, Muñoz F, Meentemeyer V, Piussi P, Remacle J, Virzo De Santo A (1993) Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry 20:127–153

    Article  Google Scholar 

  • Berg B, Ekbohm G, Johansson M-B, McClaugherty C, Rutigliano F, Virzo De Santo A (1996) Maximum decomposition limits of forest litter types; a synthesis. Can J Bot 74:659–672

    Article  Google Scholar 

  • Berg B, McClaugherty C, Johansson M-B (1997) Chemical changes in decomposing plant litter can be systemized with respect to the litter’s initial chemical composition. Dept For Ecol For Soil, Swed Univ Agric Sci Rep 74:85

    Google Scholar 

  • Berg B, Laskowski R, Virzo De Santo A (1999) Estimated N concentration in humus as based on initial N concentration in foliar litter—a synthesis. Can J Bot 77:1712–1722

    Article  Google Scholar 

  • Berg B, Meentemeyer V, Johansson M-B (2000) Litter decomposition in a climatic transect of Norway spruce forests—climate and lignin control of mass-loss rates. Can J For Res 30:1136–1147

    Article  Google Scholar 

  • Berg B, McClaugherty C, Virzo De Santo A, Johnson D (2001) Humus buildup in boreal forests - effects of litter fall and its N concentration. Can J For Res 31:988–998

    Article  CAS  Google Scholar 

  • Berg B, Steffen K, McClaugherty C (2007) Litter decomposition rates as dependent on litter Mn concentration. Biogeochemistry 85:29–39

    Article  CAS  Google Scholar 

  • Berg B, De Marco A, Davey M, Emmett B, Hobbie S, Liu C, McClaugherty C, Norell L, Johansson M-B, Rutigliano F, Vesterdal L, Virzo De Santo A (2010) Limit values for foliar litter decomposition—pine forests. Biogeochemistry 100:57–73

    Article  CAS  Google Scholar 

  • Berg B, Kjønaas J, Johansson M-B, Erhagen B, Åkerblom S (2015) Late stage pine litter decomposition: relationships to litter N, Mn and acid unhydrolyzable residue (AUR) concentrations and climatic factors. For Ecol Manage 358:41–47

    Article  Google Scholar 

  • Berg B, Sun T, Johansson M-B, Sanborn P, Ni X, Åkerblom S, Lönn M (2021) Magnesium dynamics in decomposing foliar litter – A synthesis. Geoderma 382:114756

    Google Scholar 

  • Bogatyrev L, Berg B, Staaf H (1983) Leaching of plant nutrients and total phenolic substances from some foliage litters—a laboratory study. Swed Conif For Proj Tech Rep 33:59

    Google Scholar 

  • Broadbent FE, Stevenson FJ (1966) Organic matter interactions. In: McVickar HN et al (eds) Agricultural anhydrous ammonia. Technology and use. Proceedings of Symposium St Louis, Mo, 29–30 Sept 1965. Agric Ammonia Inst, Memphis, Tenn; Am Soc Agron and Soil Sci Soc Am, Madison, WI, pp 169–187

    Google Scholar 

  • Couteaux M-M, McTiernan K, Berg B, Szuberla D, Dardennes P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595

    Article  CAS  Google Scholar 

  • Davey M, Berg B, Emmett B, Rowland P (2007) Controls of foliar litter decomposition and implications for C sequestration in oak woodlands. Can J Bot 85:16–24

    Article  Google Scholar 

  • De Marco A, Spaccini R, Vittozzi P, Esposito F, Berg B, Virzo De Santo A (2012) Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:1–15

    Article  CAS  Google Scholar 

  • Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, p 407

    Book  Google Scholar 

  • Fogel R, Cromack K (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can J Bot 55:1632–1640

    Article  Google Scholar 

  • Gautam M-K, Lee K-S, Song, B-Y, Lee D, Bong Y-SJ (2016) Early-stage changes in natural 13C and 15N abundance and nutrient dynamics during different litter decomposition. Plant Res 129:463–476

    Google Scholar 

  • Gautam MK, Lee K-S, Berg B, Song B-Y, Yean J-Y (2019) Trends of major, minor and rare earth elements in decomposing litter in a cool temperate ecosystem, South Korea. Chemosphere 222:214–226

    CAS  PubMed  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofman M, Stein A (eds) Biopolymers, vol 1. Lignin, humic substances and coal. Wiley, Weinheim, pp 129–180

    Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Mono 82(3):389–405

    Article  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microbiol Technol 30:454–466

    Article  CAS  Google Scholar 

  • Howard PJA, Howard DM (1974) Microbial decomposition of tree and shrub leaf litter. Oikos 25:311–352

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor A, Ekblad A, Högberg M, Nyberg G, Ottosson-Löfvenius M, Read D (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Jansson PE, Berg B (1985) Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a Scots pine forest V. Can J Bot 63:1008–1016

    Article  Google Scholar 

  • Jiao Z, Wang XC (2019) Contrasting rhizospheric and heterotrophic components of soil respiration during growing and non-growing seasons in a temperate deciduous forest. Forests 10:1. https://doi.org/10.3390/f10010008

  • Johansson M-B, Berg B, Meentemeyer V (1995) Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. IX. Can J Bot 73:1509–1521

    Article  Google Scholar 

  • Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. PNAS 106(46):19405–19409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassim G, Martin JP, Haider K (1981) Incorporation of a wide variety of organic substrate carbon into soil biomass as estimated by the fumigation process. Soil Sci Soc Am 45:1106–1112

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico P, Harmon ME, Mao JD, Pett-Ridge J, Kleber M (2015) Long-term litter decomposition controlled by manganese redox cycling. Proc Natl Acad Sci USA 112:E5253–E5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyser P, Kirk TK, Zeikus IG (1978) Ligninolytic enzyme of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knicker N (2004) Stabilization of N-compounds in soil and organic-matter-rich sediments—what is the difference? Mar Chem 92:167–195

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2017) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol Biochem 105:A3–A8

    Article  CAS  Google Scholar 

  • Kurz-Besson C, Coûteaux MM, Thiéry JM, Berg B, Remacle J (2005) Litterbag method vs direct observation for describing Scots pine needle decomposition. Soil Biol Biochem 37:2315–2318

    Article  CAS  Google Scholar 

  • Laskowski R, Berg B (1993) Dynamics of mineral nutrients and heavy metals in decomposing forest litter. Scand J For Res 8:446–456

    Article  Google Scholar 

  • McClaugherty CA (1983) Soluble polyphenols and carbohydrates in throughfall and leaf litter decomposition. Acta Oecol 4:375–385

    Google Scholar 

  • Nömmik H, Vahtras K (1982) Retention and fixation of ammonium and ammonia in soils. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agronomy monographs, vol 22. Agron Soc Am, Madison, WI, pp 123–171

    Google Scholar 

  • Ono K, Hirai K, Morita S, Ohse K, Hiradate S (2009) Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: evaluations of chemical compositional changes by C-13 NMR and their decomposition rates from litterbag experiment. Geoderma 151:351–356

    Article  CAS  Google Scholar 

  • Ono K, Hiradate S, Morita S, Ohse K, Hirai K (2011) Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant Soil 338:171–181

    Article  CAS  Google Scholar 

  • Ono K, Hiradate S, Morita S, Hirai K (2013) Fate of organic carbon during decomposition of different litter types in Japan. Biogeochemistry 112:7–21

    Article  Google Scholar 

  • Paul E (1984) Dynamics of organic matter in soils. Plant Soil 76:75–285

    Article  Google Scholar 

  • Perakis SS, Matkins JJ, Hibbs DE (2012) Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter. Ecosphere 3(6). http://dx.doi.org/10.1890/ES11-00340

  • Perez J, Jeffries TW (1992) Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol 58:2402–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson T, Bååth E, Clarholm M, Lundkvist H, Söderström B, Sohlenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecol Bull (Stockholm) 32:419–462

    Google Scholar 

  • Preston CM, Trofymow JA (2015) The chemistry of some foliar litters and their sequential proximate proximate analysis fractions. Biogeochemistry 126:197–209

    Google Scholar 

  • Preston C, Trofymov JA, Sayer B, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic angle spinning investigation of the proximate analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    Article  CAS  Google Scholar 

  • Preston C, Nault JR, Trofymow JA, Smyth C, CIDET Working Group (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053–1077

    Google Scholar 

  • Preston C, Nault JR, Trofymow JA (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘lignin’. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Genesis, composition, reactions. Wiley, New York, p 443

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:91–104

    Article  Google Scholar 

  • Thorn KA, Mikita MA (1992) Ammonia fixation by humic substances: a nitrogen-15 and carbon-13 NMR study. Sci Total Environ 113:67–87

    Article  CAS  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Decomposition as a Process—some Main Features. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_2

Download citation

Publish with us

Policies and ethics