Skip to main content

Models that Describe Decomposition of Foliar Litter and Roots

  • Chapter
  • First Online:
Plant Litter

Abstract

Models have been used to describe decomposition processes. There are types of models that serve different purposes. Empirical models are statistical in nature and attempt to fit empirical data to mathematical equations. Mechanistic models are theoretical in nature, using a system of equations to describe complex processes. Simulation models simulate the behavior of a system, allowing researchers to manipulate aspects of the model to investigate potential outcomes. This chapter focuses on empirical models, presenting commonly used equations for decomposition patterns: the single exponential and the asymptotic function. The decomposition pattern, indicated by e.g. initial rate and limit value for decomposition is related to litter chemical composition and environmental factors. Nitrogen (N) and manganese (Mn) may be important nutrients for the shape of the pattern. Thus, asymptotic functions have different limit values depending on the litters’ initial Mn concentration with a positive relationship between Mn concentration and limit values ranging from 55 to 100%. Thus, higher initial concentrations of Mn in litter can result in smaller amounts of long-term residue. In contrast, high N availability, both in litter and in soil, e.g. in fertilization experiments has been related to lower limit values and a larger residue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269

    CAS  Google Scholar 

  • Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208

    Article  Google Scholar 

  • Abramoff R, Xu X, Hartman M et al (2018) The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137:51–71

    Google Scholar 

  • Ågren G, Bosatta E (1996) Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–528

    Article  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Google Scholar 

  • Berg B, Booltink HGW, Breymeyer A, Ewertsson A, Gallardo A, Holm B, Johansson M-B, Koivuoja S, Meentemeyer V, Nyman P, Olofsson J, Pettersson AS, Staaf H, Staaf I, Uba L (1991) Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites. 2nd ed, sect 2, Data on needle litter decomposition. Swed Univ Agric Sci. Dept Ecol Environ Res. Rep 42, 450 pp

    Google Scholar 

  • Berg B, Matzner E (1997) The effect of N deposition on the mineralization of C from plant litter and humus. Environ Rev 5:1–25

    CAS  Google Scholar 

  • Berg B, Staaf H (1980) Leaching, accumulation and release of nitrogen from decomposing forest litter. Ecol Bull (Stockh) 32:163–178

    Google Scholar 

  • Berg B, Ekbohm G, Johansson M-B, McClaugherty C, Rutigliano F, Virzo De Santo A (1996) Some foliar litter types have a maximum limit for decomposition—a synthesis of data from forest systems. Can J Bot 74:659–672

    Article  Google Scholar 

  • Berg B, McClaugherty C, Johansson M-B (1997) Chemical changes in decomposing plant litter can be systemized with respect to the litter’s initial chemical composition. Dept For Ecol For Soil Swed Univ Agric Sci Rep 74:85 pp

    Google Scholar 

  • Berg B, Johansson M-B, Meentemeyer V (2000) Litter decomposition in a climatic transect of Norway spruce forests—climate and lignin control of mass-loss rates. Can J For Res 30:1136–1147

    Article  Google Scholar 

  • Berg B, Steffen K, McClaugherty C (2007) Litter decomposition rates as dependent on litter Mn concentration. Biogeochemistry 85:29–39

    Article  Google Scholar 

  • Berg B, De Marco A, Davey M, Emmett B, Hobbie S, Liu C, McClaugherty C, Norell L, Johansson M-B, Rutigliano F, Vesterdal L, Virzo De Santo A (2010) Limit values for foliar litter decomposition—pine forests. Biogeochemistry 100:57–73

    Article  CAS  Google Scholar 

  • Berg B, Kjønaas J, Johansson M-B, Erhagen B, Åkerblom S (2015) Late stage pine litter decomposition: relationships to litter N, Mn and acid unhydrolyzable residue (AUR) concentrations and climatic factors. For Ecol Manage 358:41–47

    Article  Google Scholar 

  • Carpenter SR (1981) Decay of heterogeneous detritus: a general model. J Theor Biol 89:539–547

    Article  Google Scholar 

  • Couteaux M-M, McTiernan K, Berg B, Szuberla D, Dardennes P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595

    Article  CAS  Google Scholar 

  • Currie WS, Harmon ME, Burke IC, Hart C, Parton JW, Silver W (2010) Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob Change Biol 16(6):1744–1761

    Article  Google Scholar 

  • Davey M, Berg B, Emmett B, Rowland P (2007) Controls of foliar litter decomposition and implications for C sequestration in oak woodlands. Can J Bot 85:16–24

    Article  Google Scholar 

  • Dong L-L, Zan P, Sun T, Wang Z-W, Lü XT, Zhang Z-J, Berg B (2019) Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a grassland in China. Soil Biol Biochem 134:78–80. https://doi.org/10.1016/j.soilbio.2019.03.016

    Article  CAS  Google Scholar 

  • Faituri MY (2002) Soil organic matter in Mediterranean and Scandinavian forest ecosystems and dynamics of nutrients and monomeric phenolic compounds. Silvestra 236, 136 pp

    Google Scholar 

  • Gang O, Chang SX, Lin G, Zhao Q, Mao B, Zeng DH (2019) Exogenous and endogenous nitrogen differentially affect the decomposition of fine roots of different diameter classes of Mongolian pine in semi-arid northeast China. Plant Soil 436:109–122. https://doi.org/10.1007/s11104-018-03910-0

    Article  CAS  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Bio 6:751–765

    Article  Google Scholar 

  • Harmon ME, Silver W, Fasth B, Chen H, Burke IC, Parton JW, Hart S, Currie WS (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–1338

    Article  Google Scholar 

  • Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition Ecosystems 8:644–6566

    Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P, (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Mono 82(3):389–405

    Google Scholar 

  • Hopkins FM, Torn MS, Trumbore SE (2012) Warming accelerates decomposition of decades-old carbon in forest soils. Proc Natl Acad Sci USA 109(26):E1753-61

    Article  Google Scholar 

  • Howard PJA, Howard DM (1974) Microbial decomposition of tree and shrub leaf litter. Oikos 25:311–352

    Article  Google Scholar 

  • Hristovski S, Berg B, Melovski L (2014) Limitless decomposition in leaf litter of Common beech: patterns, nutrients’ and heavy metal’s dynamics. Pedobiologia 57:131–138

    Article  Google Scholar 

  • Hyvönen R, Ågren GI, Dalias P (2005) Analysing temperature response of decomposition of organic matter. Global Change Biol 11:770–778

    Article  Google Scholar 

  • Jenny H, Gessel SP, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432

    Article  CAS  Google Scholar 

  • Joffre R, Ågren GI, Gillon D, Bosatta E (2001) Organic matter quality in ecological studies: theory meets experiment. Oikos 93:451–458

    Article  CAS  Google Scholar 

  • Kang H, Xin Z, Berg B, Burgess PJ, Liu Q, Li Z, Liu C (2010) Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann For Sci 67(8):811

    Google Scholar 

  • Lousier JD, Parkinson D (1976) Litter decomposition in a cool temperate deciduous forest. Can J Bot 54:419–436

    Article  CAS  Google Scholar 

  • Marchante E, Marchante H, Freitas H et al (2019) Decomposition of an N-fixing invasive plant compared with a native species: consequences for ecosystem. Appl Soil Ecol 138:19–31

    Article  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ et al (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  Google Scholar 

  • Moorhead DL, Linkins AE, Reynolds JF (1996) Decomposition processes: modeling approaches and applications. Sci Total Environ 183:137–149

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Ono K, Hiradate S, Morita S, Hirai K (2013) Fate of organic carbon during decomposition of different litter types in Japan. Biogeochemistry 112:7–21

    Article  Google Scholar 

  • Parton WJ, McKeown R, Kirchner V, Ojima D (1992) CENTURY users’ manual, natural resource ecology laboratory. Colorado State University, Collins

    Google Scholar 

  • Perakis SS, Matkins JJ, Hibbs DE (2012) Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter. Ecosphere 3(6):54. https://doi.org/10.1890/ES11-00340

    Article  Google Scholar 

  • Sun T, Dong L, Mao Z (2015) Simulated Atmospheric nitrogen deposition alters decomposition of ephemeral roots. Ecosystems 18:1240–1252

    Article  CAS  Google Scholar 

  • Sun T, Dong LL, Wang ZW, Lü XT, Mao ZJ (2016a) Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol Biochem 93:50–59

    Article  CAS  Google Scholar 

  • Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S (2016b) Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Nat Acad Sci 115(41):10392–10397. https://doi.org/10.1073/pnas.1716595115

    Article  CAS  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Models that Describe Decomposition of Foliar Litter and Roots. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_10

Download citation

Publish with us

Policies and ethics