Skip to main content

Stem Cell Delivery Techniques for Stroke and Peripheral Artery Disease

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

Stem cells are a nascent therapy for vascular diseases such as stroke and peripheral artery disease. Cells, like any other pharmaceutic agent, need to be delivered to a target organ with an optimal dose and timing to achieve therapeutic effect. A number of techniques, grouped into local, regional, and systemic approaches, have been used in human trials to deliver a variety of stem cells in both stroke and peripheral artery disease. This chapter reviews stem cell therapy for these two diseases with a focus on delivery methods. Technical details as well as the impact of patient, disease, and cell factors for each approach are discussed. Each method’s merits and pitfalls are explored, highlighting the benefit of a diverse set of delivery options for a diverse population of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hou L, Kim JJ, Woo YJ, Huang NF. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Phys Heart Circ Phys. 2016;310(4):H455–65. PubMed PMID: 26683902. Pubmed Central PMCID: 4796616.

    Google Scholar 

  2. Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res Ther. 2017;8(1):125. PubMed PMID: 28583178. Pubmed Central PMCID: 5460534.

    Google Scholar 

  3. Chau M, Zhang J, Wei L, Yu SP. Regeneration after stroke: stem cell transplantation and trophic factors. Brain Circul. 2016;2(2):86–94. PubMed PMID: 30276278. Pubmed Central PMCID: 6126254.

    Google Scholar 

  4. Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support. Neurochem Int. 2017;106:94–100. PubMed PMID: 28219641. Pubmed Central PMCID: 5446923.

    Google Scholar 

  5. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regenerat Med. 2010 Jan;5(1):121–43. PubMed PMID: 20017699. Pubmed Central PMCID: 2833273.

    Google Scholar 

  6. Singh AK, McGuirk JP. Allogeneic Stem cell transplantation: a historical and scientific overview. Cancer Res. 2016;76(22):6445–51. PubMed PMID: 27784742

    Article  CAS  PubMed  Google Scholar 

  7. Katarzyna R. Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure: an overview of evidence from the recent clinical trials. Curr Cardiol Rev. 2017;13(3):223–31. PubMed PMID: 28464769. Pubmed Central PMCID: 5633717.

    Google Scholar 

  8. Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016;37(23):1789–98. PubMed PMID: 27055812. Pubmed Central PMCID: 4912026.

    Google Scholar 

  9. Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells. 2018;36(2):161–71. PubMed PMID: 29226477

    Article  PubMed  Google Scholar 

  10. Wahid FSA, Ismail NA, Wan Jamaludin WF, Muhamad NA, Mohamad Idris MA, Lai NM. Efficacy and safety of Autologous cell-based therapy in patients with no-option critical limb Ischaemia: a meta-analysis. Curr Stem Cell Res Ther. 2018;13(4):265–83. PubMed PMID: 29532760

    Article  PubMed  Google Scholar 

  11. Zheng H, Zhang B, Chhatbar PY, Dong Y, Alawieh A, Lowe F, et al. Mesenchymal stem cell therapy in stroke: a systematic review of literature in pre-clinical and clinical research. Cell Transpl. 2018;27(12):1723–30. PubMed PMID: 30343609. Pubmed Central PMCID: 6300779.

    Google Scholar 

  12. Steele AN, MacArthur JW, Woo YJ. Stem cell therapy: healing or hype? Why stem cell delivery doesn’t work. Circulat Res. 2017;120(12):1868–70. PubMed PMID: 28596172. Pubmed Central PMCID: 5947316.

    Google Scholar 

  13. Collaborators GBDS. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):439–58. PubMed PMID: 30871944. Pubmed Central PMCID: 6494974.

    Google Scholar 

  14. Mampalam TJ, Gonzalez MF, Weinstein P, Sharp FR. Neuronal changes in fetal cortex transplanted to ischemic adult rat cortex. J Neurosurg. 1988;69(6):904–12. PubMed PMID: 3193196

    Article  CAS  PubMed  Google Scholar 

  15. Grabowski M, Brundin P, Johansson BB. Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain. Exp Neurol. 1992;116(2):105–21. PubMed PMID: 1577119

    Article  CAS  PubMed  Google Scholar 

  16. Grabowski M, Christofferson RH, Brundin P, Johansson BB. Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience. 1992;51(3):673–82. PubMed PMID: 1488117

    Article  CAS  PubMed  Google Scholar 

  17. Grabowski M, Brundin P, Johansson BB. Functional integration of cortical grafts placed in brain infarcts of rats. Ann Neurol. 1993;34(3):362–8. PubMed PMID: 8363353

    Article  CAS  PubMed  Google Scholar 

  18. Nishino H, Aihara N, Czurko A, Hashitani T, Isobe Y, Ichikawa O, et al. Reconstruction of GABAergic transmission and behavior by striatal cell grafts in rats with ischemic infarcts in the middle cerebral artery. J Neural Transpl Plast. 1993;4(2):147–55. PubMed PMID: 8110865. Pubmed Central PMCID: 2565254.

    Google Scholar 

  19. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55(4):565–9. PubMed PMID: 10953194

    Article  CAS  PubMed  Google Scholar 

  20. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005;103(1):38–45. PubMed PMID: 16121971

    Article  PubMed  Google Scholar 

  21. Kondziolka D, Steinberg GK, Cullen SB, McGrogan M. Evaluation of surgical techniques for neuronal cell transplantation used in patients with stroke. Cell Transplant. 2004;13(7–8):749–54. PubMed PMID: 15690976

    Article  PubMed  Google Scholar 

  22. Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016;388(10046):787–96. PubMed PMID: 27497862

    Article  PubMed  Google Scholar 

  23. Investigation of Neural Stem Cells in Ischemic Stroke. https://ClinicalTrials.gov/show/NCT03629275.

  24. Li ZM, Zhang ZT, Guo CJ, Geng FY, Qiang F, Wang LX. Autologous bone marrow mononuclear cell implantation for intracerebral hemorrhage-a prospective clinical observation. Clin Neurol Neurosurg. 2013;115(1):72–6. PubMed PMID: 22657095

    Article  PubMed  Google Scholar 

  25. Chang Z, Mao G, Sun L, Ao Q, Gu Y, Liu Y. Cell therapy for cerebral hemorrhage: Five year follow-up report. Exp Therap Med. 2016;12(6):3535–40. PubMed PMID: 28101148. Pubmed Central PMCID: 5228203.

    Google Scholar 

  26. Mendonca ML, Freitas GR, Silva SA, Manfrim A, Falcao CH, Gonzales C, et al. [Safety of intra-arterial autologous bone marrow mononuclear cell transplantation for acute ischemic stroke]. Arquivos Brasileiros de Cardiologia. 2006;86(1):52–5. PubMed PMID: 16491209. Seguranca do transplante autologo, intra-arterial, de celulas mononucleares da medula ossea na fase aguda do acidente vascular cerebral isquemico.

    Google Scholar 

  27. Papanagiotou P, Ntaios G. Endovascular Thrombectomy in acute ischemic stroke. Circ Cardiovasc Interv. 2018;11(1):e005362. PubMed PMID: 29311286

    Article  PubMed  Google Scholar 

  28. Janowski M, Lyczek A, Engels C, Xu J, Lukomska B, Bulte JW, et al. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2013;33(6):921–7. PubMed PMID: 23486296. Pubmed Central PMCID: 3677113.

    Google Scholar 

  29. Ge J, Guo L, Wang S, Zhang Y, Cai T, Zhao RC, et al. The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev Rep. 2014;10(2):295–303. PubMed PMID: 24390934

    Article  CAS  PubMed  Google Scholar 

  30. Cui LL, Kerkela E, Bakreen A, Nitzsche F, Andrzejewska A, Nowakowski A, et al. The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res Ther 2015;6:11. PubMed PMID: 25971703. Pubmed Central PMCID: 4429328.

    Google Scholar 

  31. Mitkari B, Kerkela E, Nystedt J, Korhonen M, Jolkkonen J. Unexpected complication in a rat stroke model: exacerbation of secondary pathology in the thalamus by subacute intraarterial administration of human bone marrow-derived mesenchymal stem cells. J Cerebral Blood Flow Metab. 2015;35(3):363–6. PubMed PMID: 25564231. Pubmed Central PMCID: 4348397.

    Google Scholar 

  32. Argibay B, Trekker J, Himmelreich U, Beiras A, Topete A, Taboada P, et al. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Sci Rep. 2017;7:40758. PubMed PMID: 28091591. Pubmed Central PMCID: 5238501.

    Google Scholar 

  33. Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, et al. Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cerebral Blood Flow Metab. 2010;30(3):653–62. PubMed PMID: 19888287. Pubmed Central PMCID: 2844252.

    Google Scholar 

  34. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39(5):1569–74. PubMed PMID: 18323495. Pubmed Central PMCID: 2857730.

    Google Scholar 

  35. Guzman R, Janowski M, Walczak P. Intra-arterial delivery of cell therapies for stroke. Stroke. 2018;49(5):1075–82. PubMed PMID: 29669876. Pubmed Central PMCID: 6027638.

    Google Scholar 

  36. Jiang Y, Zhu W, Zhu J, Wu L, Xu G, Liu X. Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transplant. 2013;22(12):2291–8. PubMed PMID: 23127560

    Article  PubMed  Google Scholar 

  37. Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology. 2007;243(3):812–9. PubMed PMID: 17517935

    Article  PubMed  Google Scholar 

  38. Meng S, Qiao M, Foniok T, Tuor UI. White matter damage precedes that in gray matter despite similar magnetic resonance imaging changes following cerebral hypoxia-ischemia in neonatal rats. Exp Brain Res. 2005;166(1):56–60. PubMed PMID: 15968456

    Article  PubMed  Google Scholar 

  39. Sharma A, Sane H, Gokulchandran N, Khopkar D, Paranjape A, Sundaram J, et al. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat. 2014;2014:234095. PubMed PMID: 25126443. Pubmed Central PMCID: 4121152.

    Google Scholar 

  40. Pan K, Deng L, Chen P, Peng Q, Pan J, Wu Y, et al. Safety and feasibility of repeated intrathecal allogeneic bone marrow-derived mesenchymal stromal cells in patients with neurological diseases. Stem Cells Int. 2019;2019:8421281. PubMed PMID: 31428161. Pubmed Central PMCID: 6683773 publication of this article.

    Google Scholar 

  41. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82. PubMed PMID: 15929052

    Article  PubMed  Google Scholar 

  42. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24. PubMed PMID: 25378424

    Article  CAS  PubMed  Google Scholar 

  43. Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(5):360–8. PubMed PMID: 28320635

    Article  PubMed  Google Scholar 

  44. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Develop. 2009;18(5):683–92. PubMed PMID: 19099374. Pubmed Central PMCID: 3190292.

    Google Scholar 

  45. Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70(1):59–69. PubMed PMID: 21786299

    Article  PubMed  Google Scholar 

  46. Misra V, Ritchie MM, Stone LL, Low WC, Janardhan V. Stem cell therapy in ischemic stroke: role of IV and intra-arterial therapy. Neurology. 2012;79(13 Suppl 1):S207–12. PubMed PMID: 23008400. Pubmed Central PMCID: 4109232.

    Google Scholar 

  47. Kassner A, Merali Z. Assessment of blood-brain barrier disruption in stroke. Stroke. 2015;46(11):3310–5. PubMed PMID: 26463696

    Article  PubMed  Google Scholar 

  48. Boshuizen MCS, Steinberg GK. Stem cell-based immunomodulation after stroke: effects on brain repair processes. Stroke. 2018;49(6):1563–70. PubMed PMID: 29724892. Pubmed Central PMCID: 6063361.

    Google Scholar 

  49. MultiStem® Administration for Stroke Treatment and Enhanced Recovery Study. https://ClinicalTrials.gov/show/NCT03545607.

  50. Chen L, Xi H, Huang H, Zhang F, Liu Y, Chen D, et al. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant. 2013;22(Suppl 1):S83–91. PubMed PMID: 23992950

    Article  PubMed  Google Scholar 

  51. Shu J, Santulli G. Update on peripheral artery disease: epidemiology and evidence-based facts. Atherosclerosis. 2018;275:379–81. PubMed PMID: 29843915. Pubmed Central PMCID: 6113064.

    Google Scholar 

  52. Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vasc Surg. 2010;51(1):230–41. PubMed PMID: 20117502

    Article  PubMed  Google Scholar 

  53. Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018;14:63–74. PubMed PMID: 29731636. Pubmed Central PMCID: 5927064.

    Google Scholar 

  54. Sprengers RW, Teraa M, Moll FL, de Wit GA, van der Graaf Y, Verhaar MC, et al. Quality of life in patients with no-option critical limb ischemia underlines the need for new effective treatment. J Vasc Surg. 2010;52(4):843–9, 9.e1. PubMed PMID: 20598482

    Article  PubMed  Google Scholar 

  55. Xie B, Luo H, Zhang Y, Wang Q, Zhou C, Xu D. Autologous stem cell therapy in critical limb ischemia: a meta-analysis of randomized controlled trials. Stem Cells Int. 2018;2018:7528464. PubMed PMID: 29977308. Pubmed Central PMCID: 5994285.

    Google Scholar 

  56. Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Therap. 2019;10(1):140. PubMed PMID: 31113463. Pubmed Central PMCID: 6528204.

    Google Scholar 

  57. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35. PubMed PMID: 12241713. Epub 2002/09/21. eng

    Article  PubMed  Google Scholar 

  58. Biscetti F, Bonadia N, Nardella E, Cecchini AL, Landolfi R, Flex A. The role of the stem cells therapy in the peripheral artery disease. Int J Mol Sci. 2019;20(9):2233. PubMed PMID: 31067647. eng

    Article  CAS  PubMed Central  Google Scholar 

  59. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–60. PubMed PMID: 16123483. Epub 2005/08/27. eng.

    Article  PubMed  Google Scholar 

  60. Fukumoto Y, Miyamoto T, Okamura T, Gondo H, Iwasaki H, Horiuchi T, et al. Angina pectoris occurring during granulocyte colony-stimulating factor-combined preparatory regimen for autologous peripheral blood stem cell transplantation in a patient with acute myelogenous leukaemia. Br J Haematol. 1997;97(3):666–8. PubMed PMID: 9207419. Epub 1997/06/01. eng.

    Article  CAS  PubMed  Google Scholar 

  61. Kawachi Y, Watanabe A, Uchida T, Yoshizawa K, Kurooka N, Setsu K. Acute arterial thrombosis due to platelet aggregation in a patient receiving granulocyte colony-stimulating factor. Br J Haematol. 1996;94(2):413–6. PubMed PMID: 8759907. Epub 1996/08/01. eng.

    Article  CAS  PubMed  Google Scholar 

  62. Heo S-H, Park Y-S, Kang E-S, Park K-B, Do Y-S, Kang K-S, et al. Early results of clinical application of Autologous whole bone marrow Stem cell transplantation for critical limb ischemia with Buerger’s disease. Sci Rep. 2016;6(1):19690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18(3):371–80. PubMed PMID: 19500466. Epub 2009/06/09. eng

    Article  PubMed  Google Scholar 

  64. Prochazka V, Gumulec J, Jaluvka F, Salounova D, Jonszta T, Czerny D, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413–24. PubMed PMID: 20529449. Pubmed Central PMCID: PMC5478382. Epub 2010/06/10. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Madaric J, Klepanec A. Cell therapy in peripheral artery disease. In: Lanzer P, editor. PanVascular medicine. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 3227–52.

    Chapter  Google Scholar 

  66. Kolvenbach R, Kreissig C, Cagiannos C, Afifi R, Schmaltz E. Intraoperative adjunctive stem cell treatment in patients with critical limb ischemia using a novel point-of-care device. Ann Vasc Surg. 2010;24(3):367–72. PubMed PMID: 19896796. Epub 2009/11/10. eng

    Article  CAS  PubMed  Google Scholar 

  67. Burt RK, Testori A, Oyama Y, Rodriguez HE, Yaung K, Villa M, et al. Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant. 2010;45(1):111–6. PubMed PMID: 19448678. Pubmed Central PMCID: PMC3951860. Epub 2009/05/19. eng

    Article  CAS  PubMed  Google Scholar 

  68. Szabo GV, Kovesd Z, Cserepes J, Daroczy J, Belkin M, Acsady G. Peripheral blood-derived autologous stem cell therapy for the treatment of patients with late-stage peripheral artery disease-results of the short- and long-term follow-up. Cytotherapy. 2013;15(10):1245–52. PubMed PMID: 23993298. Epub 2013/09/03. eng

    Article  PubMed  Google Scholar 

  69. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36. PubMed PMID: 21216483. Epub 2011/01/11. eng

    Article  PubMed  Google Scholar 

  70. Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012;20(6):1280–6. PubMed PMID: 22453769. Pubmed Central PMCID: PMC3369291. Epub 2012/03/29. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kinoshita M, Fujita Y, Katayama M, Baba R, Shibakawa M, Yoshikawa K, et al. Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia. Atherosclerosis. 2012;224(2):440–5. PubMed PMID: 22877866. Epub 2012/08/11. eng

    Article  CAS  PubMed  Google Scholar 

  72. Napoli C, Farzati B, Sica V, Iannuzzi E, Coppola G, Silvestroni A, et al. Beneficial effects of autologous bone marrow cell infusion and antioxidants/L-arginine in patients with chronic critical limb ischemia. Eur J Cardiovasc Prev Rehabil. 2008;15(6):709–18. PubMed PMID: 19050436. Epub 2008/12/04. eng

    Article  PubMed  Google Scholar 

  73. Ismail AM, Abdou SM, Aty HA, Kamhawy AH, Elhinedy M, Elwageh M, et al. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia. Cytotechnology. 2016;68(4):771–81. PubMed PMID: 25511801. Pubmed Central PMCID: 4960127.

    Google Scholar 

  74. Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled rejuvenating endothelial progenitor cells via transcutaneous intra-arterial supplementation (JUVENTAS) trial. Circulation. 2015;131(10):851–60. PubMed PMID: 25567765

    Article  CAS  PubMed  Google Scholar 

  75. Franz RW, Shah KJ, Pin RH, Hankins T, Hartman JF, Wright ML. Autologous bone marrow mononuclear cell implantation therapy is an effective limb salvage strategy for patients with severe peripheral arterial disease. J Vasc Surg. 2015;62(3):673–80. PubMed PMID: 26304481. Epub 2015/08/26. eng

    Article  PubMed  Google Scholar 

  76. Chochola M, Pytlik R, Kobylka P, Skalicka L, Kideryova L, Beran S, et al. Autologous intra-arterial infusion of bone marrow mononuclear cells in patients with critical leg ischemia. Int Angiol. 2008;27(4):281–90. PubMed PMID: 18677289. Epub 2008/08/05. eng.

    CAS  PubMed  Google Scholar 

  77. Klepanec A, Mistrik M, Altaner C, Valachovicova M, Olejarova I, Slysko R, et al. No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transpl. 2012;21(9):1909–18. PubMed PMID: 22472173. Epub 2012/04/05. eng.

    Google Scholar 

  78. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Perez-Camacho I, Marcos-Sanchez F, Hmadcha A, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20(10):1629–39. PubMed PMID: 22289660. Epub 2012/02/01. eng.

    Article  PubMed  Google Scholar 

  79. Sprengers RW, Moll FL, Verhaar MC. Stem cell therapy in PAD. Eur J Vasc Endovasc Surg. 2010;39:S38–43.

    Article  PubMed  Google Scholar 

  80. Van Tongeren RB, Hamming JF, Fibbe WE, Van Weel V, Frerichs SJ, Stiggelbout AM, et al. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg. 2008;49(1):51–8. PubMed PMID: 18212687. Epub 2008/01/24. eng

    Google Scholar 

  81. Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease. Circ Res. 2017;120(8):1326–40.

    Article  CAS  PubMed  Google Scholar 

  82. Bartsch T, Brehm M, Zeus T, Kogler G, Wernet P, Strauer BE. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study). Clin Res Cardiol. 2007;96(12):891–9. PubMed PMID: 17694378. Epub 2007/08/19. eng.

    Article  CAS  PubMed  Google Scholar 

  83. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434–8. PubMed PMID: 10202935

    Article  CAS  PubMed  Google Scholar 

  84. Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res. 2017;120(8):1326–40. PubMed PMID: 28096194

    Article  CAS  PubMed  Google Scholar 

  85. Chen Z, Chen L, Zeng C, Wang WE. Functionally improved mesenchymal stem cells to better treat myocardial infarction. Stem Cells Int. 2018;2018:7045245. PubMed PMID: 30622568. Pubmed Central PMCID: 6286742.

    Google Scholar 

  86. Shafei AE, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, et al. Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017;19(12) PubMed PMID: 29044850

    Google Scholar 

  87. Ocansey DKW, Pei B, Yan Y, Qian H, Zhang X, Xu W, et al. Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med. 2020;18(1):42. PubMed PMID: 32000804. Pubmed Central PMCID: 6993499.

    Google Scholar 

  88. Hwang CW, Johnston PV, Gerstenblith G, Weiss RG, Tomaselli GF, Bogdan VE, et al. Stem cell impregnated nanofiber stent sleeve for on-stent production and intravascular delivery of paracrine factors. Biomaterials. 2015;52:318–26. PubMed PMID: 25818438

    Article  CAS  PubMed  Google Scholar 

  89. Johnston PV, Hwang CW, Bogdan V, Mills KJ, Eggan ER, Leszczynska A, et al. Intravascular stem cell bioreactor for prevention of adverse remodeling after myocardial infarction. J Am Heart Assoc. 2019;8(15):e012351. PubMed PMID: 31340693. Pubmed Central PMCID: 6761667.

    Google Scholar 

  90. Carotenuto F, Teodori L, Maccari AM, Delbono L, Orlando G, Di Nardo P. Turning regenerative technologies into treatment to repair myocardial injuries. J Cell Mol Med. 2020;24(5):2704–16. PubMed PMID: 31568640. Pubmed Central PMCID: 7077550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Dardik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, SR., Fereydooni, A., Dardik, A. (2021). Stem Cell Delivery Techniques for Stroke and Peripheral Artery Disease. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics