Skip to main content

Cell Therapy in Peripheral Artery Disease

  • Reference work entry
  • First Online:
PanVascular Medicine

Abstract

Cell therapy has been proposed as an alternative strategy in patients with critical limb ischemia who are not eligible for endovascular or surgical revascularization. Several preclinical and clinical studies suggest that delivery of stem cells with regenerative potential and paracrine ability can improve blood circulation and tissue perfusion and thus prevent amputation via the induction of capillary or collateral growth in a process called “therapeutic angiogenesis.” Many cell types have been tested, but results of most clinical trials to date rely on the use of adult autologous bone marrow–derived mononuclear cells or cultured peripheral blood–derived proangiogenic mononuclear cells, all typically delivered unaltered in their native state. Of increased interest are mesenchymal stem cells with a capability for multipotent differentiation, cytoprotection, and damaged tissue restoration. Although the meta-analyses of randomized clinical trials demonstrate a positive benefit-to-risk ratio of cell-based therapy, its promising potential needs to be confirmed by larger randomized, placebo-controlled trials. Despite the progress in basic and clinical research and the development of new technologies, there are open issues that need to be solved, such as the optimal therapeutic cell types, methods of cell harvesting, route of delivery, and enhancement of cell reparative function. This chapter provides a summary of evidence, highlights current standing, and appraises the future perspectives of cell therapy in patients with peripheral artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Angiogenesis:

The sprouting of new capillaries from preexisting vessels; one of the mechanisms of neovascularization.

Arteriogenesis:

Remodeling of newly formed or preexisting vascular channels into larger and well-muscularized arterioles and collateral vessels; one of the mechanisms of neovascularization.

Endothelial progenitor cells:

Subpopulation of the mononuclear fraction of bone marrow or peripheral blood cells with the ability to generate cells with an endothelial phenotype.

Mesenchymal stem cells:

Nonhematopoetic cells present in bone marrow, adipose tissue, and other tissue sources involved in regenerative processes with extensive proliferative and secretory capacity and multilineage potential.

No-option critical limb ischemia:

Advanced critical limb ischemia with failed or impossible endovascular or surgical revascularization.

Stem cells:

Nonmature, nondifferentiated tissue precursors with high potential for self-renewal and the ability to differentiate into different cells lines based on stimuli from the surrounding environment.

ABI:

Ankle brachial index

AFS:

Amputation free survival

ANG:

Angiopoetin

BMA:

Bone marrow aspirate concentrate

BMCs:

Bone marrow cells

BM-MNCs:

Bone marrow mononuclear cells

BM-MSCs:

Bone marrow mesenchymal cells

CLI:

Critical limb ischemia

DSA:

Digital subtraction angiography

EPCs:

Endothelial progenitor cells

FGF:

Fibroblast growth factor

G-CSF:

Granulocyte colony-stimulating factor

HIF-1:

Hypoxia-inducible factor 1

IL:

Interleukin

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

NO-CLI:

No-option critical limb ischemia

PAD:

Peripheral artery disease

PDGF:

Platelet-derived growth factor

PET:

Positron emission tomography

RCT:

Randomized controlled trial

SDF-1:

Stromal cell-derived factor 1

SPECT:

Single-photon emission computed tomography

tcpO2 :

Transcutaneous oxygen pressure

VEGF:

Vascular endothelial growth factor

References

  • Albers M, Fratezzi AC, De Luccia N (1992) Assesment of quality of life of patients with severe ischemia as a result of infrainguinal arterial occlusive disease. J Vasc Surg 6:54–59

    Article  Google Scholar 

  • Altaner C, Altanerova V, Cihova M, Hunakova L, Kaiserova K, Klepanec A, Vulev I, Madaric J (2013) Characterization of mesenchymal stem cells of “no-options” patients with critical limb ischemia treated by autologous bone marrow mononuclear cells. PlosOne 8(9):e73722

    Google Scholar 

  • Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA (2009) Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant 18:371–380

    Article  PubMed  Google Scholar 

  • Arai M, Misao Y, Nagai H, Kawasaki M, Nagashima K, Suzuki K, Tsuchiya K, Otsuka S, Uno Y, Takemura G, Nishigaki K, Minatoguchi S, Fujiwara H (2006) Granulocyte colony-stimulating factor: a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circ J 70:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Arbab AS, Frank JA (2008) Cellular MRI and its role in stem cell therapy. Regen Med 3:199–215

    Article  CAS  PubMed  Google Scholar 

  • Arima K, Katsuda Y, Takeshita Y, Saito Y, Toyama Y, Katsuki Y, Ootsuka M, Koiwaya H, Sasaki K, Kai H, Imaizumi T (2010) Autologous transplantation of bone marrow mononuclear cells improved ischemic peripheral neuropathy in humans. J Am Coll Cardiol 56:238–239

    Article  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rössig L, Spyridopoulos I, Zeiher AM, Dimmeler S (2003) HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 92:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, Van Haute I, Lootens N, Heyndrickx G, Wijns W (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112:I178–I183

    PubMed  Google Scholar 

  • Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61:2329–2338

    Article  PubMed  Google Scholar 

  • Behfar A, Bartunek J, Terzic A (2013) Stem cell therapy for ischemic heart disease. In: Bartunek J (ed) Translational approach to heart failure. Springer, New York, pp 449–465

    Chapter  Google Scholar 

  • Behm CZ, Kaufmann BA, Carr C, Lankford M, Sanders JM, Rose CE, Kaul S, Lindner JR (2008) Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation 117:2902–2911

    Article  CAS  PubMed  Google Scholar 

  • Benoit E, O’Donnell TF Jr, Iafrati MD, Asher E, Bandyk DF, Hallett JW, Lumsden AB, Pearl GJ, Roddy SP, Vijayaraghavan K, Patel AN (2011) The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med 9:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Benoit E, O’Donnell TF, Patel AN (2013) Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review. Cell Transplant 22:545–562

    Article  PubMed  Google Scholar 

  • Bertolini F, Mancuso P, Braidotti P, Shaked Y, Kerbel RS (2009) The multiple personality disorder phenotype(s) of circulating endothelial cells in cancer. Biochim Biophys Acta 1796:27–32

    CAS  PubMed  Google Scholar 

  • Bouffi C, Bony C, Courties G, Jorgensen C, Noël D (2010) IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One 5:e142–e147

    Article  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  • Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW (1998) Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res 82:532–539

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng CC, Chang SJ, Chueh YN, Huang TS, Huang PH, Cheng SM, Tsai TN, Chen JW, Wang HW (2013) Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics 14:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chochola M, Pytlík R, Kobylka P, Skalickà L, Kideryovà L, Beran S, Varejka P, JirÃt S, KøivÃnek J, Aschermann M, Linhart A (2008) Autologous intra-arterial infusion of bone marrow mononuclear cells in patients with critical limb ischemia. Int Angiol 27:281–290

    CAS  PubMed  Google Scholar 

  • Cobellis G, Maione C, Botti C, Coppola A, Silvestroni A, Lillo S, Schiavone V, Molinari AM, Sica V (2010) Beneficial effects of VEGF secreted from stromal cells in supporting endothelial cell functions: therapeutic implications for critical limb ischemia. Cell Transplant 19:1425–1437

    Article  PubMed  Google Scholar 

  • Comerota AJ, Lin A, Douville J, Burchardt ER (2010) Upper extremity ischemia treated with tissue repair cells from adult bone marrow. J Vasc Surg 52:723–729

    Article  PubMed  Google Scholar 

  • Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87:728–730

    Article  CAS  PubMed  Google Scholar 

  • Duerschmied D, Olson L, Olschewski M, Rossknecht A, Freud G, Bode C, Hehrlein C (2006) Contrast ultrasound perfusion imaging of lower extremities in peripheral arterial disease: a novel diagnostic method. Eur Heart J 27:310–315

    Article  PubMed  Google Scholar 

  • Eguchi M, Masuda H, Asahara T (2007) Endothelial progenitor cells for postnatal vasculogenesis. Clin Exp Nephrol 11:18–25

    Article  PubMed  Google Scholar 

  • Fadini GP, Sartore S, Agostini C, Avogaro A (2007) Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care 30:1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Finney MR, Greco NJ, Haynesworth SE, Martin JM, Hedrick DP, Swan JZ, Winter DG, Kadereit S, Joseph ME, Fu P, Pompili VJ, Laughlin MJ (2006) Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant 12:585–593

    Article  PubMed  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–47

    CAS  PubMed  Google Scholar 

  • Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Goodell MA, Jackson KA, Majka SM, Mi T, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK (2001) Stem cell plasticity in muscle and bone marrow. Ann NY Acad Sci 938:208–218

    Article  CAS  PubMed  Google Scholar 

  • Gopall J, Huang W, Zhao Y (2010) Prospects of adult stem cells therapy in peripheral vascular diseases. BJMP 3:a345

    Google Scholar 

  • Gu YQ, Zhang J, Guo LR, Qi LX, Zhang SW, Xu J, Li JX, Luo T, Ji BX, Li XF, Yu HX, Cui SJ, Wang ZG (2008) Transplantation of autologous bone marrow mononuclear cells for patients with lower limb ischemia. Chin Med J 121:963–967

    PubMed  Google Scholar 

  • Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S, Krishnamurthy S, Anthony N, Pherwani A, Majumdar AS (2013) A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med 11:143. doi:10.1186/1479-5876-11-143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Schaper W (2004) Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 95:449–458

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45–55

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL (2006) ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113:e463–e654

    Article  PubMed  Google Scholar 

  • Honda A, Matsuura K, Fukushima N, Tsurumi Y, Kasanuki H, Hagiwara N (2009) Telmisartan induces proliferation of human endothelial progenitor cells via PPARgamma-dependent PI3K/Akt pathway. Atherosclerosis 205:376–384

    Article  CAS  PubMed  Google Scholar 

  • Honold J, Lehmann R, Heeschen C, Walter DH, Assmus B, Sasaki K, Martin H, Haendeler J, Zeiher AM, Dimmeler S (2006) Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol 26:2238–2243

    Article  CAS  PubMed  Google Scholar 

  • Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC (2005) Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 28:2155–60

    Article  PubMed  Google Scholar 

  • Iafrati MD, Hallett JW, Geils G, Pearl G, Lumsden A, Peden E, Bandyk D, Vijayaraghava KS, Radhakrishnan R, Ascher E, Hingorani A, Roddy S (2011) Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg 54:1650–1658

    Article  PubMed  Google Scholar 

  • Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M (2008) A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26:2408–2418

    Article  PubMed  Google Scholar 

  • Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M, Hulbert C, Gavin M, Hanley A, Ma H, Kearney M, Zak V, Asahara T, Losordo DW (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114:2163–2169

    Article  PubMed  Google Scholar 

  • Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, Nandrean SG, Götting C, Minartz P, Kleesiek K, Tschoepe D (2012) Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 66:384–393

    Article  CAS  PubMed  Google Scholar 

  • Klepanec A, Mistrik M, Altaner C, Valachovicova M, Olejarova I, Slysko R, Balazs T, Urlandova T, Hladikova D, Liska B, Tomka J, Vulev I, Madaric J (2012) No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transplant 21:1909–1918

    Article  PubMed  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  CAS  PubMed  Google Scholar 

  • Koshikawa M, Shimodaira S, Yoshioka T, Kasai H, Watanabe N, Wada Y, Seto T, Fukui D, Amano J, Ikeda U (2006) Therapeutic angiogenesis by bone marrow implantation for critical hand ischemia in patients with peripheral arterial disease: a pilot study. Curr Med Res Opin 22:793–798

    Article  PubMed  Google Scholar 

  • Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo M, Li TS, Kurazumi H, Takemoto Y, Ohshima M, Murata T, Katsura S, Morikage N, Furutani A, Hamano K (2012) Hypoxic preconditioning enhances angiogenic potential of bone marrow cells with aging-related functional impairment. Circ J 76:986–994

    Article  CAS  PubMed  Google Scholar 

  • Lambiase PD, Edwards RJ, Anthopoulos P, Rahman S, Meng YG, Bucknall CA, Redwood SR, Pearson JD, Marber MS (2004) Circulating humoral factors and endothelial progenitor cells in patients with differing coronary collateral support. Circulation 109:2986–2892

    Article  PubMed  Google Scholar 

  • Lawall H, Bramlage P, Amann B (2010) Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost 103:696–709

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc C, Tammik K, Rosendahl E, Zetterberg Ringdén O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 10:890–896

    Article  Google Scholar 

  • Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J 76:1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Lev EI, Kleiman NS, Birnbaum Y, Harris D, Korbling M, Estrov Z (2005) Circulating endothelial progenitor cells and coronary collaterals in patients with non-ST segment elevation myocardial infarction. J Vasc Res 42:408–414

    Article  PubMed  Google Scholar 

  • Li TS, Kubo M, Ueda K, Murakami M, Mikamo A, Hamano K (2010) Impaired angiogenic potency of bone marrow cells from patients with advanced age, anemia, and renal failure. J Thorac Cardiovasc Surg 139(2):459–465

    Article  PubMed  Google Scholar 

  • Liu FP, Dong JJ, Sun SJ, Gao WY, Zhang ZW, Zhou XJ, Yang L, Zhao JY, Yao JM, Liu M, Liao L (2012) Autologous bone marrow stem cell transplantation in critical limb ischemia: a meta-analysis of randomized controlled trials. Chin Med J (Engl) 125:4296–4300

    Google Scholar 

  • Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M, Poh KK, Weinstein R, Kearney M, Chaudhry M, Burg A, Eaton L, Heyd L, Thorne T, Shturman L, Hoffmeister P, Story K, Zak V, Dowling D, Traverse JH, Olson RE, Flanagan J, Sodano D, Murayama T, Kawamoto A, Kusano KF, Wollins J, Welt F, Shah P, Soukas P, Asahara T, Henry TD (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115:3165–3172

    Article  PubMed  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92:26–36

    Article  PubMed  Google Scholar 

  • Madaric J, Klepanec A, Mistrik M, Altaner C, Vulev I (2013) Intra-arterial autologous bone marrow cell transplantation in a patient with upper-extremity critical limb ischemia. Cardiovasc Intervent Radiol 36:545–548

    Article  PubMed  Google Scholar 

  • Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, Saito Y, Uemura S, Suzuki H, Fukumoto S, Yamamoto Y, Onodera R, Teramukai S, Fukushima M, Matsubara H, TACT Follow-up Study Investigators (2008) Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 156:1010–1018

    Article  PubMed  Google Scholar 

  • Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE, Riordan NH (2008) Allogeneic endometrial regenerative cells: an „Off the shelf solution“for critical limb ischemia? J Transl Med 6:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Neubauer AM, Myerson J, Caruthers SD, Hockett FD, Winter PM, Chen J, Gaffney PJ, Robertson JD, Lanza GM, Wickline SA (2008) Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 60:1066–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, TASC II Working Group (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg 33(Suppl 1):S1–75

    Article  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  • Patel AN, Yockman J, Vargas V, Bull DA (2013a) Putative population of adipose-derived stem cells isolated from mediastinal tissue during cardiac surgery. Cell Transplant 22:507–511

    Article  PubMed  Google Scholar 

  • Patel AN, Vargas V, Revello P, Bull DA (2013b) Mesenchymal stem cell population isolated from the subepithelial layer of umbilical cord tissue. Cell Transplant 22:513–519

    Article  PubMed  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, Stern TP, Watling S, Bartel RL (2012) Cellular therapy with ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther 20:1280–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procházka V, Gumulec J, Jaluvka F, Salounová D, Jonszta T, Czerny D, Krajca J, Urbanec R, Klement P, Martinek J, Klement GL (2010) Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant 19:1413–1424

    Article  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Porcel M, Kronenberg MW, Henry TD, Traverse JH, Pepine CJ, Ellis SG, Willerson JT, Moyé LA, Simari RD (2012) Cell tracking and the development of cell-based therapies: a view from the Cardiovascular Cell Therapy Research network. JACC Cardiovasc Imaging 5:559–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Rookmaaker MB, Verhaar MC, Loomans CJ, Verloop R, Peters E, Westerweel PE, Murohara T, Staal FJ, van Zonneveld AJ, Koolwijk P, Rabelink TJ, van Hinsbergh VW (2005) CD34+ cells home, proliferate, and participate in capillary formation, and in combination with CD- cells enhance tube formation in a 3-dimensional matrix. Arterioscler Thromb Vasc Biol 25:1843–1850

    Article  CAS  PubMed  Google Scholar 

  • Ryu JC, Davidson BP, Xie A, Qi Y, Zha D, Belcik JT, Caplan ES, Woda JM, Hedrick CC, Hanna RN, Lehman N, Zhao Y, Ting A, Lindner JR (2013) Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation 127:710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saigawa T, Kato K, Ozawa T, Toba K, Makiyama Y, Minagawa S, Hashimoto S, Furukawa T, Nakamura Y, Hanawa H, Kodama M, Yoshimura N, Fujiwara H, Namura O, Sogawa M, Hayashi J, Aizawa Y (2004) Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J 68:1189–1193

    Article  PubMed  Google Scholar 

  • Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C, Rossig L, Koehl U, Koyanagi M, Mohamed A, Brandes RP, Martin H, Zeiher AM, Dimmeler S (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci U S A 103:14537–14541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shantsila E, Watson T, Lip GY (2007) Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 49:741–752

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    CAS  PubMed  Google Scholar 

  • Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  • Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T, Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  • Tateno K, Minamino T, Toko H, Akazawa H, Shimizu N, Takeda S, Kunieda T, Miyauchi H, Oyama T, Matsuura K, Nishi J, Kobayashi Y, Nagai T, Kuwabara Y, Iwakura Y, Nomura F, Saito Y, Komuro I (2006) Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization. Circ Res 98:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Teraa M, Sprengers RW, van der Graaf Y, Peters CE, Moll FL, Verhaar MC (2013) Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta-analysis of randomized controlled clinical trials. Ann Surg [Epub ahead of print]

    Google Scholar 

  • Thu MS, Bryant LH, Coppola T, Jordan EK, Budde MD, Lewis BK, Chaudhry A, Ren J, Varma NR, Arbab AS, Frank JA (2012) Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18:463–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tongers J, Roncalli JG, Losordo DW (2010) Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res 79:200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353

    Article  CAS  PubMed  Google Scholar 

  • Van Tongeren RB, Hamming JF, Fibbe WE, Van Weel V, Frerichs SJ, Stiggelbout AM, Van Bockel JH, Lindeman JH (2008) Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg (Torino) 49:51–58

    PubMed  Google Scholar 

  • Van Tongeren RB, Hamming J, Le Cessie S, van Erkel AR, van Bockel JH (2010) Limited value of digital subtraction angiography in the evaluation of cell-based therapy in patients with limb ischemia. Int J Cardiovasc Imaging 26:19–25

    Article  PubMed  Google Scholar 

  • Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, Dimmeler S (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103:2885–2890

    Article  CAS  PubMed  Google Scholar 

  • Vaughan EE, Liew A, Mashayekhi K, Dockery P, McDermott J, Kealy B, Flynn A, Duffy A, Coleman C, O’Regan A, Barry FP, O’Brien T (2012) Pretreatment of endothelial progenitor cells with osteopontin enhances cell therapy for peripheral vascular disease. Cell Transplant 21:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, Badiwala MV, Mickle DA, Weisel RD, Fedak PW, Stewart DJ, Kutryk MJ (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109:2058–2067

    Article  CAS  PubMed  Google Scholar 

  • Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  CAS  PubMed  Google Scholar 

  • Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schlüter M, Tonn T, Seeger F, Dimmeler S, Lindhoff-Last E, Zeiher AM, PROVASA Investigators (2011) Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv 4:26–37

    Article  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci 90:4304–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi C, Xia W, Zheng Y, Zhang L, Shu M, Liang J, Han Y, Guo S (2006) Transplantation of endothelial progenitor cells transferred by vascular endothelial growth factor gene for vascular regeneration of ischemic flaps. J Surg Res 135:100–106

    Article  CAS  PubMed  Google Scholar 

  • Ziegelhoffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238

    Article  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Madaric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Madaric, J., Klepanec, A. (2015). Cell Therapy in Peripheral Artery Disease. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_193

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_193

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics