Skip to main content

Non-native Species Introductions, Invasions, and Biotic Homogenization in the Atlantic Forest

  • Chapter
  • First Online:
The Atlantic Forest

Abstract

Anthropogenic introduction of non-native species has occurred since the first European colonization of South America in the 1500s, with the Atlantic Forest being the most heavily affected biome in the continent. Biological invasions, together with other anthropogenic pressures occurring over the subsequent 500 years, led to many biological changes such as biotic homogenization. In this chapter, we discuss patterns of non-native species introductions, highlight invasions or population explosions of problematic native species, and explore the phenomenon of biotic homogenization in the Atlantic Forest, Brazil. We explore examples related to the effect of recent introductions of non-native species, highlighting the loss of native biodiversity (e.g., rare, specialist, and endemic) and the proliferation of human-mediated non-native species of economic importance (e.g., genrealist, common and widely distributed). We also discuss the role of society and policymakers in developing policies of public interest. Finally, we discuss how raising awareness of the negative effects of invasive non-native species will contribute to inform management policies and provoke more in-depth research, resulting in greater protection and sound management strategy for the Atlantic Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostinho AA, Miranda LE, Bini LM et al (1999) Patterns of colonization in neotropical reservoirs, and prognoses on aging. In: Tundisi JG, Straskraba M (eds) Theoretical reservoir ecology and its applications. Backhuys Publishers, Leiden, pp 227–265

    Google Scholar 

  • Angelo C (2016) Brazil’s scientists battle to escape 20-year funding freeze. Nature News 539:7630

    Article  CAS  Google Scholar 

  • Azevedo-Santos VM, Fearnside PM, Oliveira CS et al (2017) Removing the abyss between conservation science and policy decisions in Brazil. Biodivers Conserv 26:175–1752

    Article  Google Scholar 

  • Azevedo-Santos VM, Frederico RG, Fagundes CK et al (2019) Protected areas: a focus on Brazilian freshwater biodiversity. Divers Distrib 25:442–448

    Article  Google Scholar 

  • Bacher S, Blackburn TM, Essl F et al (2017) Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol Evol 9:159–168

    Article  Google Scholar 

  • Baiser B, Olden JD, Record S et al (2012) Pattern and process of biotic homogenization in the New Pangaea. Proc R Soc B 279:4772–4777

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros LC, Santos U, Zanuncio JC, Dergam JA (2012) Plagioscion squamosissimus (Sciaenidae) and Parachromis managuensis (Cichlidae): a threat to native fishes of the Doce River in Minas Gerais, Brazil. PloS One 7:e39138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechara FC, Reis A, Trentin BE (2013) Invasão biológica de Pinus elliottii var. elliottii no Parque Estadual do Rio Vermelho, Florianópolis, SC. Floresta 44:63–72

    Article  Google Scholar 

  • Bezerra LAV, Freitas MO, Daga VS et al (2019) A network meta-analysis of threats to South American fish biodiversity. Fish Fish 20(4):620–639. https://doi.org/10.1111/faf.12365

    Article  Google Scholar 

  • Boone MD, Little EE, Semlitsch RD (2004) Overwintered bullfrog tadpoles negatively affect salamanders and anurans in native amphibian communities. Copeia 2004:683–690

    Article  Google Scholar 

  • Both C, Melo AS (2015) Diversity of anuran communities facing bullfrog invasion in Atlantic Forest ponds. Biol Invasions 17:1137–1147

    Article  Google Scholar 

  • Both C, Lingnau R, Santos-Jr A et al (2011) Widespread occurrence of the American bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil. S Am J Herpetol 6:127–134

    Article  Google Scholar 

  • Bourscheid K, Reis A (2010) Dinâmica da invasão de Pinus elliottii Engelm. em restinga sob processo de restauração ambiental no Parque Florestal do Rio Vermelho, Florianópolis, SC. Biotemas 23:23–30

    Google Scholar 

  • Braga RR, Gómez-Aparicio L, Heger T et al (2018) Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biol Invasions 20:923–936

    Article  Google Scholar 

  • Brice M-H, Pellerin S, Poulin M (2017) Does urbanization lead to taxonomic and functional homogenisation in riparian forests? Divers Distrib 23:828–840

    Article  Google Scholar 

  • Campos GS, Bandeira AC, Sardi SI (2015) Zika Virus Outbreak, Bahia, Brazil. Emerg Infect Dis 21:1885–1886

    Article  PubMed  PubMed Central  Google Scholar 

  • Canonico GC, Arthington A, McCrary JK, Thieme ML (2005) The effects of introduced tilapias on native biodiversity. Aquat Conserv 15:463–483

    Article  Google Scholar 

  • Carrete M, Tella JL (2008) Wild-bird trade and exotic invasions: a new link of conservation concern? Front Ecol Environ 6:207–211

    Article  Google Scholar 

  • Carvalho T, Becker CG, Toledo LF (2017) Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc R Soc B 284:20162254

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho WD, Mustin K, Paulino JS, Adania CH, Rosalino LM (2019) Recreational hunting and the use of non-selective traps for population control of feral pigs in Brazil. Biodivers Conserv 28:3045–3050

    Article  Google Scholar 

  • Cervo IB (2017) Dieta de Sus scrofa e suas implicações na agropecuária e na biodiversidade no Brasil. MSc Dissertation, Universidade Federal do Rio Grande do Sul, Brazil. [In Portuguese]

    Google Scholar 

  • Ceschin F, Bini LM, Padial AA (2018) Correlates of fish and aquatic macrophyte beta diversity in the Upper Paraná River floodplain. Hydrobiologia 805:377–389

    Article  CAS  Google Scholar 

  • Clusa L, Miralles L, Basanta A, Escot C, García-Vázquez E (2017) eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. PLoS One 12:e0188126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crosby GT (1972) Spread of the cattle egret in the Western Hemisphere. Bird-Banding 43:205

    Article  Google Scholar 

  • Daga VS, Skóra F, Padial AA et al (2015) Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia 746:327–347

    Article  Google Scholar 

  • Daszak P, Strieby A, Cunningham AA et al (2004) Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol J 14:201–207

    Google Scholar 

  • De Castro MCT, Fileman TW, Hall-Spencer JM (2017) Invasive species in Northern and Southwestern Atlantic Ocean: a review. Mar Poll Bull 116:41–47

    Article  CAS  Google Scholar 

  • De Oliveira SV, Vargas A, Rocha SM et al (2018) The nature of attacks by wild boar (Sus scrofa) and wild boar/domestic pig hybrids (‘javaporcos’) and the conduct of anti-rabies care in Brazil. Int Am J Med Health 1:e201801001

    Google Scholar 

  • Deberdt AJ, Scherer SB (2007) O javali asselvajado: ocorrência e manejo da espécie no Brasil. Nat Conserv 5:31–44

    Google Scholar 

  • Early R, Bradley BA, Dukes JS et al (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun 7:12485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enedino TR, Loures-Ribeiro A, Santos BA (2018) Protecting biodiversity in urbanizing regions: the role of urban reserves for the conservation of Brazilian Atlantic Forest birds. Perspect Ecol Conserv 16:17–23

    Google Scholar 

  • Enserink M (2014) Crippling virus set to conquer Western Hemisphere. Science 344:678–679

    Article  CAS  PubMed  Google Scholar 

  • Essl F, Bacher S, Genovesi P et al (2018) Which taxa are alien? Criteria, applications, and uncertainties. Bioscience 68:496–509

    Article  Google Scholar 

  • Evans T, Kumschick S, Blackburn TM (2016) Application of the environmental impact classification for alien taxa (EICAT) to a global assessment of alien bird impacts. Divers Distrib 22:919–931

    Article  Google Scholar 

  • Falleiros RM, Zenni RD, Ziller SR (2011) Invasão e manejo de Pinus taeda em campos de altitude do Parque Estadual do Pico Paraná, Paraná, Brasil. Floresta 41:123–134

    Article  Google Scholar 

  • Faria D, Paciencia MLB, Dixo M et al (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodivers Conserv 8:2335–2357

    Article  Google Scholar 

  • Faria GMM, Rosa CA, Corrêa GLC et al (2016) Geographic distribution of the European hare (Lepus europaeus) in Brazil and new records of occurrence for the Cerrado and Atlantic Forest biomes. Mammalia 80:497–505

    Article  Google Scholar 

  • Fernandez S, Sandin MM, Beaulieu PG et al (2018) Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area. PeerJ 6:e4486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira CM, Pimenta AGC, Paiva-Neto JS (2002) Introdução à ranicultura. B Inst Pesca 33:1–15

    Google Scholar 

  • Ferreira CEL, Junqueira AOR, Villac MC, Lopes RM (2008) Marine bioinvasions in the Brazilian coast: brief report on history of events, vectors, ecology, impacts and management of non-indigenous species. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 459–478

    Google Scholar 

  • Figueiredo MSL, Weber MM, Brasileiro CA et al (2021) Tetrapod diversity in the Atlantic Forest: maps and gaps. In: Marques MCM, Grelle CEV (eds) The Atlantic Forest: history, biodiversity, threats and opportunities of the megadiverse forest. Springer, Switzerland

    Google Scholar 

  • Filgueiras BK, Tabarelli M, Leal IR et al (2016) Spatial replacement of dung beetles in edge-affected habitats: biotic homogenization or divergence in fragmented tropical forest landscapes? Divers Distrib 22:400–409

    Article  Google Scholar 

  • Fontoura PM (2013) Non-native bird species in Brazil. Neotrop Biol Conserv 3:165–175

    Google Scholar 

  • Forti LR, Becker CG, Tacioli L et al (2017) Perspectives on invasive amphibians in Brazil. PLoS One 12:e0184703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frehse FA, Braga RR, Nocera GA, Vitule JRS (2016) Non-native species and invasion biology in a megadiverse country: scientometric analysis and ecological interactions in Brazil. Biol Invasions 18:3713–3725

    Article  Google Scholar 

  • Frehse FA, Andrade PDB, Vitule JRS (2018) Absence of the invasive golden mussel in a reservoir near Curitiba, Brazil: a possible case of invasion failure. Neotrop Biol Conserv 13:86–89

    Google Scholar 

  • Fritsche S, Klocko AL, Boron A et al (2018) Strategies for engineering reproductive sterility in plantation forests. Front Plant Sci 9:1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Froese R, Pauly D (2019) FishBase. World wide web electronic publication. http://www.fishbase.org. Accessed 10 April 2019

  • Guimarães TCS, Schmidt IB (2017) A systematization of information on Brazilian federal protected areas with management actions for animal invasive alien species. Perspect Ecol Conserv 15:136–140

    Google Scholar 

  • Gutierre SMM, Vitule JRS, Freire CA, Prodocimo V (2013) Physiological tools to predict invasiveness and spread via estuarine bridges: tolerance of Brazilian native and worldwide introduced freshwater fishes to increased salinity. Marine Fresh Res 65:425–436

    Article  Google Scholar 

  • Haddad CFB, Toledo LF, Prado CPA, Loebmann D, Gasparini JL, Sazima I (2013) Guide to the amphibians of the Atlantic Forest: diversity and biology, 1st edn. Anolis Books, São Paulo, 550p

    Google Scholar 

  • Hegel CGZ (2017) Padrões de ocupação do javali (Sus scrofa L.) na Mata Atlântica sul-brasileira. MSc Dissertation, Universidade Regional Integrada do Alto Uruguai e das Missões at Erechim

    Google Scholar 

  • Hegel CGZ, Marini MÂ (2013) Impact of the wild boar, Sus scrofa, on a fragment of Brazilian Atlantic Forest. Neotrop Biol Conserv 8:17–24

    Google Scholar 

  • Hegel CGZ, Marini MÂ (2018) Large felids as predators of wild boars in the Atlantic Forest: reconciling Verdade et al. and Rosa et al. Anim Conserv 21:363–364

    Article  Google Scholar 

  • Hegel CGZ, Santos LR, Marinho JR, Marini MÂ (2019a) Is the wild pig the real “big bad wolf”? Negative effects of wild pig on Atlantic Forest mammals. Biol Invasions 21:3561–3574

    Article  Google Scholar 

  • Hegel CGZ, Santos LRD, Pichorim M, Marini MÂ (2019b) Wild pig (Sus scrofa L.) occupancy patterns in the Brazilian Atlantic forest. Biota Neotrop 19:e20180719

    Article  Google Scholar 

  • Hermoso V, Clavero M, Kennard MJ (2012) Determinants of fine-scale homogenization and differentiation of native freshwater fish faunas in a Mediterranean Basin: implications for conservation. Divers Distrib 18:236–247

    Article  Google Scholar 

  • Humair F, Kueffer C, Siegrist M (2014) Are non-native plants perceived to be more risky? Factors influencing horticulturists’ risk perceptions of ornamental plant species. PLoS One 9:e102121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • I3N Brasil (2019) Base de dados nacional de espécies exóticas invasoras. Instituto Hórus de Desenvolvimento e Conservação Ambiental, Florianópolis. http://i3n.institutohorus.org.br. Accessed 04 Apr 2019

  • IBAMA (2005) Instrução Normativa Ibama N° 71 de 04 de agosto de 2005 do Instituto Brasileiro do Meio Ambiente e dos Recursos Renováveis (IBAMA). Ministério do Meio Ambiente (MMA), Brasília

    Google Scholar 

  • IBAMA (2013) Instrução Normativa Ibama N° 03 de 31 de janeiro de 2013 do Instituto Brasileiro do Meio Ambiente e dos Recursos Renováveis (IBAMA). Ministério do MeioAmbiente (MMA), Brasília

    Google Scholar 

  • Jaksic FM (1998) Vertebrate invaders and their ecological impacts in Chile. Biodivers Conserv 7:1427–1445

    Article  Google Scholar 

  • Jarić I, Heger T, Monzon FC et al (2019) Crypticity in biological invasions. Trends Ecol Evol 34:291–302

    Article  PubMed  Google Scholar 

  • Jepson P, Ladle RJ (2015) Nature apps: waiting for the revolution. Ambio 44:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiesecker JM, Blaustein AR, Miller CL (2001) Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82:1964–1970

    Article  Google Scholar 

  • Klemann-Junior L, Vallejos MAV, Scherer-Neto P, Vitule JRS (2017) Traditional scientific data vs. uncoordinated citizen science effort: a review of the current status and comparison of data on avifauna in Southern Brazil. PLoS One 12:e0188819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kress WJ, Garcia-Robledo C, Soares JVB et al (2018) Citizen science and climate change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. Bioscience 68:348–358

    Article  Google Scholar 

  • Lessa I, Guimarães TCS, Bergallo HG et al (2016) Domestic dogs in protected areas: a threat to Brazilian mammals? Nat Conserv 14:46–56

    Article  Google Scholar 

  • Lips KR, Diffendorfer J, Mendelson JR, Sears MW (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6:e72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lôbo D, Leão T, Melo FPL et al (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers Distrib 17:287–296

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2009) Invasion ecology. Blackwell, Oxford

    Google Scholar 

  • Lopes VG, Branco CWC, Kozlowsky-Suzuki B et al (2017) Predicting temporal variation in zooplankton beta diversity is challenging. PLoS One 12:e0187499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucy FE, Roy H, Simpson A et al (2016) INVASIVESNET towards an International Association for Open Knowledge on invasive alien species. Manage Biol Invasions 7:131–139

    Article  Google Scholar 

  • Magurran AE, Dornelas M, Moyes F et al (2015) Rapid biotic homogenization of marine fish assemblages. Nat Commun 6:8405

    Article  CAS  PubMed  Google Scholar 

  • Mahon AR, Jerde CL (2016) Using environmental DNA for invasive species surveillance and monitoring. In: Bourlat S (ed) Marine genomics. Methods in molecular biology. Humana Press, New York

    Google Scholar 

  • Martello F, Bello F, Morini MSC et al (2018) Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci Rep 8:3266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazza G, Tricarico E, Genovesi P, Gherardi F (2014) Biological invaders are threats to human health: an overview. Ethol Ecol Evol 26:112–129

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  CAS  PubMed  Google Scholar 

  • Medeiros CI, Both C, Grant T, Hartz SM (2017) Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol Invasions 19:675–690

    Article  Google Scholar 

  • Metzger JP (2009) Conservation issues in the Brazilian Atlantic Forest. Biol Conserv 142:1138–1140

    Article  Google Scholar 

  • Michelan TS, Thomaz SM, Mormul RP, Carvalho P (2010) Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biol 55:1315–1326

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Morais TA, Rosa CA, Azevedo CS, Viana-Junior AB, Santos P, Passamani M (2019) Factors affecting space use by wild boars (Sus scrofa) in high-elevation tropical forests. Can J Zool 97:971–978

    Article  Google Scholar 

  • Morante-Filho JC, Faria D, Mariano-Neto E et al (2015) Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS One 6:e0128923

    Article  CAS  Google Scholar 

  • Morante-Filho JC, Arroyo-Rodríguez V, Faria D (2016) Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. J Anim Ecol 1:240–250

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • O’Hanlon SJ, Rieux A, Farrer RA et al (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360:621–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Olden JD, Kennard MJ, Leprieur F et al (2010) Conservation biogeography of freshwater fishes: recent progress and future challenges. Divers Distrib 16:496–513

    Article  Google Scholar 

  • Olden JD, Comte L, Giam X (2018) The Homogocene: research prospectus for the study of biotic homogenization. NeoBiota 37:23–36

    Article  Google Scholar 

  • Oliveira CHS (2012) Ecologia e manejo de javali (Sus scrofa L.) na América do Sul. Dissertation, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. [In Portuguese]

    Google Scholar 

  • PAN - Plano Nacional de Prevenção, Controle e Monitoramento do Javali (2017) Ministério do Meio Ambiente e Ministério da Agricultura, Pecuária e Abastecimento. Brasília, Brasil

    Google Scholar 

  • Paschoal AMO, Massara RL, Santos JL, Chiarello AG (2012) Is the domestic dog becoming an abundant species in the Atlantic forest? A study case in southeastern Brazil. Mammalia 76:67–76

    Article  Google Scholar 

  • Paschoal AMO, Massara RL, Bailey LL et al (2016) Use of Atlantic Forest protected areas by free-ranging dogs: estimating abundance and persistence of use. Ecosphere 7:e01480

    Article  Google Scholar 

  • Paschoal AMO, Massara RL, Bailey LL et al (2018) Anthropogenic disturbances drive domestic dog use of Atlantic Forest protected areas. Trop Conserv Sci 11:1–14

    Google Scholar 

  • Patoka J, Magalhães ALB, Kouba A et al (2018) Invasive aquatic pets: failed policies increase risks of harmful invasions. Biodivers Conserv 27:3037

    Article  Google Scholar 

  • Pedrosa F, Salerno R, Padilha FVB, Galetti M (2015) Current distribution of invasive feral pigs in Brazil: economic impacts and ecological uncertainty. Nat Conserv 13:84–87

    Article  Google Scholar 

  • Petesse ML, Petrere M Jr (2012) Tendency towards homogenisation in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecol Eng 48:109–116

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pivello VR, Vieira MV, Grombone-Guaratini MT, Matos DMS (2018) Thinking about super-dominant populations of native species – examples from Brazil. Perspect Ecol Conser 16:74–82

    Google Scholar 

  • Puertas FHG (2015) A invasão do javali na Serra da Mantiqueira: aspectos populacionais, uso do habitat e sua relação com o homem. Thesis, University Federal de Lavras, Lavras, Minas Gerais, Brazil. [In Portuguese]

    Google Scholar 

  • Pyšek P, Richardson DM, Pergl J et al (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • Queiroz-Sousa J, Brambilla EM, Garcia-Ayala JR et al (2018) Biology, ecology and biogeography of the South American silver croaker, an important Neotropical fish species in South America. Rev Fish Biol Fisher 28:693–714

    Article  Google Scholar 

  • Quintela FM, Santos MB, Oliveira SV, Costa RC, Christoff AU (2010) Wild boars and feral pigs (Suidae, Sus scrofa) in the Restinga of Rio Grande, RS, Brazil: ecosystems of occurrence and preliminary data on environmental impacts. Neotrop Biol Conserv 5:172–178

    Article  Google Scholar 

  • Rahel FJ (2000) Homogenization of fish faunas across the United States. Science 288:854–856

    Article  CAS  PubMed  Google Scholar 

  • Reis RE, Albert JS, Dario FD et al (2016) Fish biodiversity and conservation in South America. J Fish Biol 89:12–47

    Article  CAS  PubMed  Google Scholar 

  • Richardson DM (2011) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford

    Google Scholar 

  • Rodriguez D, Becker CG, Pupin NC et al (2014) Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol Ecol 23:774–787

    Article  CAS  PubMed  Google Scholar 

  • Rosa CA, Curi NHA, Puertas F, Passamani M (2017) Alien terrestrial mammals in Brazil: current status and management. Biol Invasions 19:2101–2123

    Article  Google Scholar 

  • Rosa CAD, Wallau MO, Pedrosa F (2018) Hunting as the main technique used to control wild pigs in Brazil. Wildl Soc Bull 42:111–118

    Article  Google Scholar 

  • Rosell C, Fernández-Llario P, Herrero J (2001) El jabalí (Sus scrofa Linnaeus, 1758). Galemys 13:1–25

    Google Scholar 

  • Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632

    Article  Google Scholar 

  • Sales LP, Ribeiro BR, Hayward MW et al (2017) Niche conservatism and the invasive potential of the wild boar. J Anim Ecol 86:1214–1223

    Article  PubMed  Google Scholar 

  • Sampaio AB, Schmidt IB (2014) Espécies exóticas invasoras em unidades de conservação federais do Brasil. Biodivers Bras 2:32–49

    Google Scholar 

  • Santos ABI, de Freitas TB, Araújo FG (2010) Influence of the river flow on the structure of fish assemblage along the longitudinal gradient from river to reservoir. Fortschr Zool 27:732–740

    Google Scholar 

  • Santos ABI, Albieri RJ, Araújo FG (2013) Seasonal response of fish assemblages to habitat fragmentation caused by an impoundment in a Neotropical river. Environ Biol Fish 96:1377–1387

    Article  Google Scholar 

  • Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331

    Article  Google Scholar 

  • Scheele BC, Pasmans F, Berger L et al (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459–1463

    Article  CAS  PubMed  Google Scholar 

  • Schloegel LM, Toledo LF, Longcore JE et al (2012) Novel, panzootic, and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21:5162–5177

    Article  PubMed  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sick H (2001) Ornitologia brasileira: uma introdução. Nova Fronteira, Brasília

    Google Scholar 

  • Silva MAF, Verona CE, Conde M, Pires AS (2018) Frugivory and potential seed dispersal by the exotic-invasive marmoset Callithrix jacchus (Primates, Callitrichidae) in an urban Atlantic Forest, Rio de Janeiro, Brazil. Mammalia 82:343–349

    Article  Google Scholar 

  • Simberloff D (2011) Native invaders. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biologica invasions. University of California Press, California, pp 472–475

    Google Scholar 

  • Simberloff D, Rejmánek M (2011) Encyclopedia of biological invasions. University of California Press, Los Angeles

    Google Scholar 

  • Simberloff D, Vitule JRS (2014) A call for an end to calls for the end of invasion biology. Oikos 123:408–413

    Article  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species invasional meltdown. Biol Invasions 1:21–32

    Article  Google Scholar 

  • Simberloff D, Souza L, Nunez MA et al (2012) The natives are restless, but not often and mostly when disturbed. Ecology 93:598–607

    Article  PubMed  Google Scholar 

  • Siqueira T, Lacerda CG-LT, Saito VS (2015) How does landscape modification induce biological homogenization in tropical stream metacommunities? Biotropica 47:509–516

    Article  Google Scholar 

  • Souza RSCL, Silva JV (2004) Água de Lastro e Bioinvasão. Interciência, Rio de Janeiro

    Google Scholar 

  • Srbek-Araujo AC, Chiarello AG (2008) Domestic dogs in Atlantic forest preserves of South-Eastern Brazil: a camera-trapping study on patterns of entrance and site occupancy rates. Braz J Biol 68:771–779

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    Article  CAS  Google Scholar 

  • Thier O, Wesenberg J (2016) Floristic composition and edge-induced homogenization in tree communities in the fragmented Atlantic rainforest of Rio de Janeiro, Brazil. Trop Conserv Sci 9:852–876

    Article  Google Scholar 

  • Toledo LF, Silva RR, Haddad CFB (2007) Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J Zool 271:170–177

    Article  Google Scholar 

  • Toussaint A, Beauchard O, Oberdorff T et al (2016) Worldwide freshwater fish homogenization is driven by a few widespread non-native species. Biol Invasions 18:1295–1304

    Article  Google Scholar 

  • Travassos L, Carvalho ID, Pires AS et al (2018) Living and lost mammals of Rio de Janeiro’s largest biological reserve: an updated species list of Tinguá. Biota Neotrop 18:e20170453

    Article  Google Scholar 

  • UN United Nations (1992) A/CONF.151/26 (Vol. I) - Rio Declaration. 12 Aug 1992. Report on the United Nations Conference on Environment and Development

    Google Scholar 

  • Vallejos MAV, Padial AA, Vitule JRS (2016) Human-induced landscape changes homogenize Atlantic Forest bird assemblages through nested species loss. PLoS One 11:e0147058

    Article  CAS  Google Scholar 

  • Vanstreels RET, Teixeira RHF, Camargo LC et al (2010) Impacts of animal traffic on the Brazilian Amazon parrots (Amazona species) collection of the Quinzinho de Barros Municipal Zoological Park, Brazil, 1986-2007. Zoo Biol 29:600–614

    Article  PubMed  Google Scholar 

  • Vitule JRS, Skóra F, Abilhoa V (2012) Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib 18:111–120

    Article  Google Scholar 

  • Vitule JRS, Costa APL, Frehse FA et al (2016) Comments on ‘Fish biodiversity and conservation in South America by Reis et al (2016)’. J Fish Biol 90:1182–1190

    Article  PubMed  Google Scholar 

  • Williams KE, Huyvaert KP, Vercauteren KC et al (2018) Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecol Evol 8:688–695

    Article  PubMed  Google Scholar 

  • Winter M, Schweiger O, Klotz S et al (2009) Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc Natl Acad Sci U S A 106:21721–21725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenni RD (2014) Analysis of introduction history of invasive plants in Brazil reveals patterns of association between biogeographical origin and reason for introduction. Austral Ecol 39:401–407

    Article  Google Scholar 

  • Zenni RD, Hoban SM (2015) Loci under selection during multiple range expansions of an invasive plant are mostly population specific, but patterns are associated with climate. Mol Ecol 13:3360–3371

    Article  Google Scholar 

  • Zenni RD, Nuñes MA (2013) The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:801–815

    Article  Google Scholar 

  • Zenni RD, Simberloff D (2013) Number of source populations as a potential driver of pine invasions in Brazil. Biol Invasions 15:1623–1639

    Article  Google Scholar 

  • Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Brazilian J Bot 34:431–446

    Article  Google Scholar 

  • Zenni RD, Bailey JK, Simberloff D (2014a) Rapid evolution and range expansion of an invasive plant are driven by provenance -environment interactions. Ecol Lett 17:727–735

    Article  PubMed  Google Scholar 

  • Zenni RD, Lamy J-B, Lamarque LJ, Porté AJ (2014b) Adaptive evolution and phenotypic plasticity during naturalization and spread of invasive species: implications for tree invasion biology. Biol Invasions 16:635–644

    Article  Google Scholar 

  • Zenni RD, Dickie IA, Wingfield MJ et al (2017) Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB Plants. https://doi.org/10.1093/aobpla/plw085

  • Ziller SR, Dechoum MS (2014) Plantas e vertebrados exóticos invasores em unidades de conservação no Brasil. Biodivers Bras 2:4–31

    Google Scholar 

  • Zwiener VP, Lira-Noriega A, Grady CJ et al (2018) Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob Ecol Biogeogr 27:298–309

    Article  Google Scholar 

Download references

Acknowledgments

All authors are thankful to the Horus Institute for providing access to the database especially to Sílvia R. Ziller. The authors are grateful to the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – Brazil) for the constant research productivity grants provided to JRSV (PQ Process Numbers: 302367/2018-7 and 303776/2015-3) and for support supplied to VSD (Process Number: 167382/2017-9), RRB (Process Number: 152289/2018-6), VRP (Process Number: 303970/2018-9), and DMSM (Process Number: 307839/2014-1). We also would like to thank Dr. Marcia M. Marques and Carlos E. de V. Grelle who have organized the entire book with excellence and professionalism.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vitule, J.R.S. et al. (2021). Non-native Species Introductions, Invasions, and Biotic Homogenization in the Atlantic Forest. In: Marques, M.C.M., Grelle, C.E.V. (eds) The Atlantic Forest. Springer, Cham. https://doi.org/10.1007/978-3-030-55322-7_13

Download citation

Publish with us

Policies and ethics